We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Offspring of parents with bipolar disorder (BD) (BO) are at higher risk of BD than offspring of parents with non-BD psychopathology (NBO), although both groups are at higher risk than offspring of psychiatrically healthy parents (HC) for other affective and psychiatric disorders. Abnormal functioning in reward circuitry has been demonstrated previously in individuals with BD. We aimed to determine whether activation and functional connectivity in this circuitry during risky decision-making differentiated BO, NBO and HC.
Method.
BO (n = 29; mean age = 13.8 years; 14 female), NBO (n = 28; mean age = 13.9 years; 12 female) and HC (n = 23; mean age = 13.7 years; 11 female) were scanned while performing a number-guessing reward task. Of the participants, 11 BO and 12 NBO had current non-BD psychopathology; five BO and four NBO were taking psychotropic medications.
Results.
A 3 (group) × 2 (conditions: win-control/loss-control) analysis of variance revealed a main effect of group on right frontal pole activation: BO showed significantly greater activation than HC. There was a significant main effect of group on functional connectivity between the bilateral ventral striatum and the right ventrolateral prefrontal cortex (Z > 3.09, cluster-p < 0.05): BO showed significantly greater negative functional connectivity than other participants. These between-group differences remained after removing youth with psychiatric disorders and psychotropic medications from analyses.
Conclusions.
This is the first study to demonstrate that reward circuitry activation and functional connectivity distinguish BO from NBO and HC. The fact that the pattern of findings remained when comparing healthy BO v. healthy NBO v. HC suggests that these neuroimaging measures may represent trait-level neurobiological markers conferring either risk for, or protection against, BD in youth.
Depression in the context of bipolar disorder (BDd) is often misdiagnosed as unipolar disorder depression (UDd) leading to poor clinical outcomes for many bipolar sufferers. We examined neural circuitry supporting emotion regulation in females with either BDd or UDd as a first stage toward identifying biomarkers that may differentiate BDd from UDd.
Method
Fifty-seven females aged 18–45 years participated in this study: 23 with UDd, 18 with bipolar disorder type I depression (BDId) and 16 healthy females. During 3-T functional magnetic resonance imaging (fMRI), the participants performed an emotional face n-back (EFNBACK) task, that is an n-back task with high (2-back) and low (0-back) memory load conditions flanked by two positive, negative or neutral face distracters. This paradigm examines executive control with emotional distracters–emotion regulation.
Results
High memory load with neutral face distracters elicited greater bilateral and left dorsal anterior midcingulate cortex (dAMCC) activity in UDd than in healthy and BDId females respectively, and greater bilateral putamen activity in both depressed groups versus healthy females. High memory load with happy face distracters elicited greater left putamen activity in UDd than in healthy females. Psychotropic medication was associated with greater putamen activity to these contrasts in UDd females.
Conclusions
During high memory load with neutral face distracters, elevated dAMCC activity in UDd suggests abnormal recruitment of attentional control circuitry to maintain task performance, whereas elevated putamen activity unrelated to psychotropic medication in BDId females may suggest an attentional bias toward ambiguous neutral face distracters. Differential patterns of functional abnormalities in neural circuitry supporting attentional control during emotion regulation, especially in the dAMCC, is a promising neuroimaging measure to distinguish UDd from BDId in females.
Patients with major depressive disorder (MDD) show deficits in processing of facial emotions that persist beyond recovery and cessation of treatment. Abnormalities in neural areas supporting attentional control and emotion processing in remitted depressed (rMDD) patients suggests that there may be enduring, trait-like abnormalities in key neural circuits at the interface of cognition and emotion, but this issue has not been studied systematically.
Method
Nineteen euthymic, medication-free rMDD patients (mean age 33.6 years; mean duration of illness 34 months) and 20 age- and gender-matched healthy controls (HC; mean age 35.8 years) performed the Emotional Face N-Back (EFNBACK) task, a working memory task with emotional distracter stimuli. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to measure neural activity in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC), orbitofrontal cortex (OFC), ventral striatum and amygdala, using a region of interest (ROI) approach in SPM2.
Results
rMDD patients exhibited significantly greater activity relative to HC in the left DLPFC [Brodmann area (BA) 9/46] in response to negative emotional distracters during high working memory load. By contrast, rMDD patients exhibited significantly lower activity in the right DLPFC and left VLPFC compared to HC in response to positive emotional distracters during high working memory load. These effects occurred during accurate task performance.
Conclusions
Remitted depressed patients may continue to exhibit attentional biases toward negative emotional information, reflected by greater recruitment of prefrontal regions implicated in attentional control in the context of negative emotional information.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.