We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Optical metamaterials are an exciting new field in optical science. A rapidly developing class of these metamaterials are those that allow the manipulation of volume and surface electromagnetic waves in desirable ways by suitably structuring the surfaces they interact with. They have applications in a variety of fields, such as materials science, photovoltaic technology, imaging and lensing, beam shaping and lasing. Describing techniques and applications, this book is ideal for researchers and professionals working in metamaterials and plasmonics, as well as those just entering this exciting new field. It surveys different types of structured surfaces, their design and fabrication, their unusual optical properties, recent experimental observations and their applications. Each chapter is written by an expert in that area, giving the reader an up-to-date overview of the subject. Both the experimental and theoretical aspects of each topic are presented.
If a metamaterial can be defined as a deliberately structured material that possesses physical properties that are not possible in naturally occurring materials, then deliberately structured surfaces that possess desirable optical properties that planar surfaces do not posses can surely be considered to be optical metamaterials. The surface structures displaying these properties can be periodic, deterministic but not periodic, or random.
In recent years interest has arisen in optical science in the study of such surfaces and the optical phenomena to which they give rise. A wide variety of these phenomena have been predicted theoretically and observed experimentally. They can be divided roughly into those in which volume electromagnetic waves participate and those in which surface electromagnetic waves participate. Both types of optical phenomena and the surface structures that produce them are described in this volume.
The first several chapters are devoted to optical interactions of volume electromagnetic waves with structured surfaces. One of the earliest examples of a structured surface that acts as an optical metamaterial, and the one that today is perhaps the best known and most widely studied, is a metal film pierced by a two-dimensional periodic array of holes with subwavelength diameters. It was shown experimentally by Ebbesen et al. [1] that the transmission of p-polarized light through this structure can be extraordinarily high at the wavelengths of the surface plasmon polaritons supported by the film.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.