Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-06T04:18:11.758Z Has data issue: false hasContentIssue false

7 - MR perfusion imaging in neuroscience

from Section 1 - Techniques

Published online by Cambridge University Press:  05 May 2013

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Xavier Golay
Affiliation:
National Hospital for Neurology and Neurosurgery, London
Gregory Zaharchuk
Affiliation:
Stanford University Medical Center
Get access

Summary

Introduction

It is well known that elevated neuronal activity is accompanied by increased glucose and oxygen delivery to tissue. As these substrates are delivered to the tissue by the blood, changes in cerebral blood flow (CBF), or perfusion, are also closely associated with modulations in neuronal activity. Thus, information regarding brain function can be obtained from measurements of CBF, and corresponding measurements of hemodynamic activity have emerged as the most popular approach for assessing changes in brain function [1–4]. CBF, defined in Chapters 1 and 3, is the rate at which the blood is delivered to tissue (generally reported in units of ml blood/100 g tissue/min), as opposed to the quantity or velocity of blood in vessels. It is known that functionally driven changes in hemodynamic activity are associated with complex cerebrovascular interactions between perivascular neurons, glio-vascular and intramural vascular signaling; however, the precise mechanisms by which neuronal activity elicits changes in CBF have not been fully established [5].

Type
Chapter
Information
Clinical Perfusion MRI
Techniques and Applications
, pp. 103 - 126
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attwell, D, Iadecola, C.The neural basis of functional brain imaging signals. Trends Neurosci 2002;25(12):621–5.CrossRefGoogle ScholarPubMed
Logothetis, NK.The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 2002;357(1424):1003–37.CrossRefGoogle ScholarPubMed
Gjedde, A.Brain energy metabolism and the physiological basis of the haemodynamic response. In: Jezzard, P, Matthews, PM, Smiths, SM, editors. Functional MRI: An Introduction to Methods. New York: Oxford University Press, 2001; 37–65.Google Scholar
Ogawa, S, Lee, TM, Kay, AR, Tank, DW.Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87(24):9868–72.CrossRefGoogle ScholarPubMed
Iadecola, C.Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5(5):347–60.CrossRefGoogle ScholarPubMed
Powers, WJ, Grubb, RL, Darriet, D, Raichle, ME.Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 1985;5(4):600–8.CrossRefGoogle ScholarPubMed
Raichle, ME, Martin, WR, Herscovitch, P, Mintun, MA, Markham, J.Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 1983;24(9):790–8.Google Scholar
Wintermark, M, Sesay, M, Barbier, E, et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol 2005;32(5):294–314.CrossRefGoogle ScholarPubMed
Kuo, PH, Kanal, E, Abu-Alfa, AK, Cowper, SE.Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007;242(3):647–9.CrossRefGoogle ScholarPubMed
Huang, B, Law, MW, Khong, PL.Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 2009;251(1):166–74.CrossRefGoogle ScholarPubMed
Williams, DS, Detre, JA, Leigh, JS, Koretsky, AP.Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89(1):212–16.CrossRefGoogle ScholarPubMed
Lu, H, Clingman, C, Golay, X, van Zijl, PC.Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004;52(3):679–82.CrossRefGoogle ScholarPubMed
Donahue, MJ, Lu, H, Jones, CK, Pekar, JJ, van Zijl, PC.An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR Biomed 2006;19(8):1043–54.CrossRefGoogle Scholar
Ogawa, S, Tank, DW, Menon, R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89(13):5951–5.CrossRefGoogle ScholarPubMed
Kwong, KK, Belliveau, JW, Chesler, DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89(12):5675–9.CrossRefGoogle ScholarPubMed
Buxton, RB, Uludag, K, Dubowitz, DJ, Liu, TT.Modeling the hemodynamic response to brain activation. Neuroimage 2004;23 Suppl 1:S220–33.CrossRefGoogle ScholarPubMed
van Zijl, PC, Eleff, SM, Ulatowski, JA, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 1998;4(2):159–67.CrossRefGoogle ScholarPubMed
Buxton, RB.The elusive initial dip. Neuroimage 2001;13(6 Pt 1):953–8.CrossRefGoogle ScholarPubMed
Lu, H, Golay, X, Pekar, JJ, Van Zijl, PC.Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab 2004;24(7):764–70.CrossRefGoogle ScholarPubMed
Donahue, MJ, Near, J, Blicher, JU, Jezzard, P.Baseline GABA concentration and fMRI response. Neuroimage 2010;53(2):392–8.CrossRefGoogle ScholarPubMed
Kannurpatti, SS, Motes, MA, Rypma, B, Biswal, BB.Non-neural BOLD variability in block and event-related paradigms. Magn Reson Imaging 2011;29(1):140–6.CrossRefGoogle ScholarPubMed
Lu, H, Zhao, C, Ge, Y, Lewis-Amezcua, K.Baseline blood oxygenation modulates response amplitude: physiologic basis for intersubject variations in functional MRI signals. Magn Reson Med 2008;60(2):364–72.CrossRefGoogle ScholarPubMed
Buxton, RB, Wong, EC, Frank, LR.Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998;39(6):855–64.CrossRefGoogle ScholarPubMed
Donahue, MJ, Blicher, JU, Ostergaard, L, et al. Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 2009;29(11):1856–66.CrossRefGoogle ScholarPubMed
Sotero, RC, Trujillo-Barreto, NJ.Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. Neuroimage 2007;35(1):149–65.CrossRefGoogle ScholarPubMed
Chatton, JY, Pellerin, L, Magistretti, PJ.GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci U S A 2003;100(21):12456–61.CrossRefGoogle Scholar
Hyder, F, Patel, AB, Gjedde, A, et al. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 2006;26(7):865–77.CrossRefGoogle ScholarPubMed
Patel, AB, de Graaf, RA, Mason, GF, et al. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 2005;102(15):5588–93.CrossRefGoogle ScholarPubMed
Sibson, NR, Dhankhar, A, Mason, GF, et al. In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci U S A 1997;94(6):2699–704.CrossRefGoogle ScholarPubMed
Buzsaki, G, Kaila, K, Raichle, M.Inhibition and brain work. Neuron 2007;56(5):771–83.CrossRefGoogle ScholarPubMed
Duong, TQ, Yacoub, E, Adriany, G, et al. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 2003;49(6):1019–27.CrossRefGoogle Scholar
Donahue, MJ, Hoogduin, H, van Zijl, PC, et al. Blood oxygenation level-dependent (BOLD) total and extravascular signal changes and DeltaR(2)* in human visual cortex at 1.5, 3.0 and 7.0 T. NMR Biomed 2011;24(1):25–34.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10(4–5):237–49.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Chiarelli, PA, Bulte, DP, Wise, R, Gallichan, D, Jezzard, P.A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 2007;37(3):808–20.CrossRefGoogle ScholarPubMed
Detre, JA, Alsop, DC.Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 1999;30(2):115–24.CrossRefGoogle ScholarPubMed
Wu, WC, Fernandez-Seara, M, Detre, JA, Wehrli, FW, Wang, J.A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007;58(5):1020–7.CrossRefGoogle ScholarPubMed
Dai, W, Garcia, D, de Bazelaire, C, Alsop, DC.Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60(6):1488–97.CrossRefGoogle ScholarPubMed
Fernandez-Seara, MA, Wang, J, Wang, Z, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp 2007;28(12):1391–400.CrossRefGoogle ScholarPubMed
Wang, J, Aguirre, GK, Kimberg, DY, et al. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 2003;49(5):796–802.CrossRefGoogle ScholarPubMed
Lu, H, Donahue, MJ, van Zijl, PC.Detrimental effects of BOLD signal in arterial spin labeling fMRI at high field strength. Magn Reson Med 2006;56(3):546–52.CrossRefGoogle ScholarPubMed
Woolrich, MW, Chiarelli, P, Gallichan, D, Perthen, J, Liu, TT.Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magn Reson Med 2006;56(4):891–906.CrossRefGoogle ScholarPubMed
Gonzalez-At, JB, Alsop, DC, Detre, JA.Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 2000;43(5):739–46.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Ho, YC, Petersen, ET, Golay, X.Measuring arterial and tissue responses to functional challenges using arterial spin labeling. Neuroimage 2010;49(1):478–87.CrossRefGoogle ScholarPubMed
Ho, YC, Petersen, ET, Zimine, I, Golay, X.Similarities and differences in arterial responses to hypercapnia and visual stimulation. J Cereb Blood Flow Metab 2011;31(2):560–71.CrossRefGoogle ScholarPubMed
Günther, M, Oshio, K, Feinberg, DA.Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005;54(2):491–8.CrossRefGoogle ScholarPubMed
Ye, FQ, Frank, JA, Weinberger, DR, McLaughlin, AC.Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000;44(1):92–100.3.0.CO;2-M>CrossRefGoogle Scholar
Ye, FQ, Berman, KF, Ellmore, T, et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 2000;44(3):450–6.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Feng, CM, Narayana, S, Lancaster, JL, et al. CBF changes during brain activation: fMRI vs. PET. Neuroimage 2004;22(1):443–6.CrossRefGoogle ScholarPubMed
Noguchi, T, Kawashima, M, Irie, H, et al. Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 2011;80(3):e557–62.CrossRefGoogle ScholarPubMed
Koziak, AM, Winter, J, Lee, TY, Thompson, RT, Lawrence, KS.Validation study of a pulsed arterial spin labeling technique by comparison to perfusion computed tomography. Magn Reson Imaging 2008;26(4):543–53.CrossRefGoogle ScholarPubMed
Knutsson, L, van Westen, D, Petersen, ET, et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010;28(1):1–7.CrossRefGoogle ScholarPubMed
He, J, Devonshire, IM, Mayhew, JE, Papadakis, NG.Simultaneous laser Doppler flowmetry and arterial spin labeling MRI for measurement of functional perfusion changes in the cortex. Neuroimage 2007;34(4):1391–404.CrossRefGoogle ScholarPubMed
Wang, DJ, Chen, Y, Fernandez Seara, MA, Detre, JA.Potentials and challenges for arterial spin labeling (ASL) in pharmacological MRI (phMRI). J Pharmacol Exp Ther 2011; 337(2):359–66.CrossRefGoogle Scholar
Mouridsen, K, Golay, X; all named co-authors of the QUASAR test-retest study. The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage 2010;49(1):104–13.Google Scholar
Talagala, SL, Ye, FQ, Ledden, PJ, Chesnick, S.Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 2004;52(1):131–40.CrossRefGoogle Scholar
Frahm, J, Baudewig, J, Kallenberg, K, et al. The post-stimulation undershoot in BOLD fMRI of human brain is not caused by elevated cerebral blood volume. Neuroimage 2008;40(2):473–81.CrossRefGoogle Scholar
Yacoub, E, Ugurbil, K, Harel, N.The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. J Cereb Blood Flow Metab 2006;26(5):634–44.CrossRefGoogle ScholarPubMed
Mandeville, JB, Marota, JJ, Ayata, C, et al. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 1999;19(6):679–89.CrossRefGoogle ScholarPubMed
Hillman, EM, Devor, A, Bouchard, MB, et al. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 2007;35(1):89–104.CrossRefGoogle ScholarPubMed
Fuchtemeier, M, Leithner, C, Offenhauser, N, et al. Elevating intracranial pressure reverses the decrease in deoxygenated hemoglobin and abolishes the post-stimulus overshoot upon somatosensory activation in rats. Neuroimage 2010;52(2):445–54.CrossRefGoogle ScholarPubMed
Kim, T, Kim, SG.Temporal dynamics and spatial specificity of arterial and venous blood volume changes during visual stimulation: implication for BOLD quantification. J Cereb Blood Flow Metab 2011;31(5):1211–22.CrossRefGoogle ScholarPubMed
Drew, PJ, Shih, AY, Kleinfeld, D.Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc Natl Acad Sci U S A 2011;108(20):8473–8.CrossRefGoogle ScholarPubMed
Tian, P, Teng, IC, May, LD, et al. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc Natl Acad Sci U S A 2010;107(34):15246–51.CrossRefGoogle ScholarPubMed
Frahm, J, Kruger, G, Merboldt, KD, Kleinschmidt, A.Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 1996;35(2):143–8.CrossRefGoogle ScholarPubMed
Mandeville, JB, Marota, JJ, Kosofsky, BE, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med 1998;39(4):615–24.CrossRefGoogle ScholarPubMed
Kida, I, Rothman, DL, Hyder, F.Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 2007;27(4):690–6.CrossRefGoogle ScholarPubMed
Jones, M, Berwick, J, Johnston, D, Mayhew, J.Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage 2001;13(6 Pt 1):1002–15.CrossRefGoogle ScholarPubMed
Qiu, D, Zaharchuk, G, Christen, T, Ni, WW, Moseley, ME.Contrast-enhanced functional blood volume imaging (CE-fBVI): enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. Neuroimage 2012;62:1726–31.CrossRefGoogle ScholarPubMed
Tuunanen, PI, Vidyasagar, R, Kauppinen, RA.Effects of mild hypoxic hypoxia on poststimulus undershoot of blood-oxygenation-level-dependent fMRI signal in the human visual cortex. Magn Reson Imaging 2006;24(8):993–9.CrossRefGoogle ScholarPubMed
Schroeter, ML, Kupka, T, Mildner, T, Uludag, K, von Cramon, DY. Investigating the post-stimulus undershoot of the BOLD signal–a simultaneous fMRI and fNIRS study. Neuroimage 2006;30(2):349–58.CrossRefGoogle ScholarPubMed
Friston, KJ, Mechelli, A, Turner, R, Price, CJ.Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 2000;12(4):466–77.CrossRefGoogle ScholarPubMed
Shmuel, A, Augath, M, Oeltermann, A, Logothetis, NK.Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 2006;9(4):569–77.CrossRefGoogle ScholarPubMed
Hoge, RD, Atkinson, J, Gill, B, et al. Stimulus-dependent BOLD and perfusion dynamics in human V1. Neuroimage 1999;9(6 Pt 1):573–85.CrossRefGoogle ScholarPubMed
Kruger, G, Kleinschmidt, A, Frahm, J.Stimulus dependence of oxygenation-sensitive MRI responses to sustained visual activation. NMR Biomed 1998;11(2):75–9.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Donahue, MJ, Stevens, RD, de Boorder, M, et al. Hemodynamic changes after visual stimulation and breath holding provide evidence for an uncoupling of cerebral blood flow and volume from oxygen metabolism. J Cereb Blood Flow Metab 2009;29(1):176–85.CrossRefGoogle ScholarPubMed
Fox, PT, Raichle, ME.Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 1984;51(5):1109–20.CrossRefGoogle ScholarPubMed
Mintun, MA, Lundstrom, BN, Snyder, AZ, et al. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 2001;98(12):6859–64.CrossRefGoogle ScholarPubMed
Siesjö, BK.Brain Energy Metabolism. Chichester (Eng.); New York: Wiley, 1978.Google ScholarPubMed
Hua, J, Stevens, RD, Huang, AJ, Pekar, JJ, van Zijl, PC.Physiological origin for the BOLD poststimulus undershoot in human brain: vascular compliance versus oxygen metabolism. J Cereb Blood Flow Metab 2011;31(7):1599–611.CrossRefGoogle ScholarPubMed
Hua, J, Qin, Q, Donahue, MJ, et al. Inflow-based vascular-space-occupancy (iVASO) MRI. Magn Reson Med 2011;66(1):40–56.CrossRefGoogle ScholarPubMed
Huppert, TJ, Hoge, RD, Diamond, SG, Franceschini, MA, Boas, DA.A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 2006;29(2):368–82.CrossRefGoogle ScholarPubMed
Uludag, K, Dubowitz, DJ, Yoder, EJ, et al. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 2004;23(1):148–55.CrossRefGoogle ScholarPubMed
Griffeth, VE, Perthen, JE, Buxton, RB.Prospects for quantitative fMRI: investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. Neuroimage 2011;57(3):809–16.CrossRefGoogle ScholarPubMed
Griffeth, VE, Perthen, AB, Buxton, RB.Quantitative combined ASL/BOLD imaging: implications for the interpretation of the BOLD post-stimulus undershoot. Proc Intl Soc Magn Reson Med, Honolulu, Hawai'i, USA, 2009.Google Scholar
Rossini, PM, Altamura, C, Ferretti, A, et al. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics?Brain 2004;127(Pt 1):99–110.CrossRefGoogle ScholarPubMed
Iannetti, GD, Wise, RG.BOLD functional MRI in disease and pharmacological studies: room for improvement?Magn Reson Imaging 2007;25(6):978–88.CrossRefGoogle Scholar
MacIntosh, BJ, Pattinson, KT, Gallichan, D, et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab 2008;28(8):1514–22.CrossRefGoogle ScholarPubMed
Kofke, WA, Blissitt, PA, Rao, H, et al. Remifentanil-induced cerebral blood flow effects in normal humans: dose and ApoE genotype. Anesth Analg 2007;105(1):167–75.CrossRefGoogle ScholarPubMed
Davis, TL, Kwong, KK, Weisskoff, RM, Rosen, BR.Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 1998;95(4):1834–9.CrossRefGoogle ScholarPubMed
Chen, Y, Parrish, TB.Caffeine's effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. Neuroimage 2009;44(3):647–52.CrossRefGoogle ScholarPubMed
Chen, Y, Parrish, TB.Caffeine dose effect on activation-induced BOLD and CBF responses. Neuroimage 2009;46(3):577–83.CrossRefGoogle ScholarPubMed
Lawrence, KS, Ye, FQ, Lewis, BK, Frank, JA, McLaughlin, AC.Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn Reson Med 2003;50(1):99–106.CrossRefGoogle Scholar
Uludag, K, Buxton, RB.Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn Reson Med 2004;51(5):1088–9; author reply 1090.Google ScholarPubMed
Bokkers, RP, van Osch, MJ, van der Worp, HB, et al. Symptomatic carotid artery stenosis: impairment of cerebral autoregulation measured at the brain tissue level with arterial spin-labeling MR imaging. Radiology 2010;256(1):201–8.CrossRefGoogle ScholarPubMed
Last, D, Alsop, DC, Abduljalil, AM, et al. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care 2007;30(5):1193–9.CrossRefGoogle ScholarPubMed
Zappe, AC, Uludag, K, Oeltermann, A, Ugurbil, K, Logothetis, NK.The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex 2008;18(11):2666–73.CrossRefGoogle ScholarPubMed
Lu, H, Ge, Y.Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 2008;60(2):357–63.CrossRefGoogle ScholarPubMed
Lu, H, Yezhuvath, US, Xiao, G.Improving fMRI sensitivity by normalization of basal physiologic state. Hum Brain Mapp 2010;31(1):80–7.Google ScholarPubMed
Mescher, M, Merkle, H, Kirsch, J, Garwood, M, Gruetter, R.Simultaneous in vivo spectral editing and water suppression. NMR Biomed 1998;11(6):266–72.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Edden, RA, Barker, PB.Spatial effects in the detection of gamma-aminobutyric acid: improved sensitivity at high fields using inner volume saturation. Magn Reson Med 2007;58(6):1276–82.CrossRefGoogle ScholarPubMed
Waddell, KW, Avison, MJ, Joers, JM, Gore, JC.A practical guide to robust detection of GABA in human brain by J-difference spectroscopy at 3 T using a standard volume coil. Magn Reson Imaging 2007;25(7):1032–8.CrossRefGoogle Scholar
Waddell, KW, Zanjanipour, P, Pradhan, S, et al. Anterior cingulate and cerebellar GABA and Glu correlations measured by (1)H J-difference spectroscopy. Magn Reson Imaging 2011;29(1):19–24.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, SD, Edden, RA, Jones, DK, Swettenham, JB, Singh, KD.Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A 2009;106(20):8356–61.CrossRefGoogle ScholarPubMed
Chen, Z, Silva, AC, Yang, J, Shen, J.Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res 2005;79(3):383–91.CrossRefGoogle ScholarPubMed
Northoff, G, Walter, M, Schulte, RF, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 2007;10(12):1515–17.CrossRefGoogle ScholarPubMed
Fox, MD, Raichle, ME.Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8(9):700–11.CrossRefGoogle ScholarPubMed
He, BJ, Shulman, GL, Snyder, AZ, Corbetta, M.The role of impaired neuronal communication in neurological disorders. Curr Opin Neurol 2007;20(6):655–60.CrossRefGoogle ScholarPubMed
Xie, J, Jezzard, P, Li, L, et al. Identification of resting state networks using whole-brain CASL. Proc Intl Soc Mag Reson Med, Stockholm, Sweden, 2010;3424.Google Scholar
Raichle, ME, MacLeod, AM, Snyder, AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98(2):676–82.CrossRefGoogle ScholarPubMed
Garrity, AG, Pearlson, GD, McKiernan, K, et al. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007;164(3):450–7.CrossRefGoogle Scholar
Assaf, M, Jagannathan, K, Calhoun, VD, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010;53(1):247–56.CrossRefGoogle ScholarPubMed
Greicius, MD, Srivastava, G, Reiss, AL, Menon, V.Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101(13):4637–42.CrossRefGoogle ScholarPubMed
Zou, Q, Wu, CW, Stein, EA, Zang, Y, Yang, Y.Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 2009;48(3):515–24.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Chanraud, S, Pitel, AL, et al. Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb Cortex 2011;21(1):233–44.CrossRefGoogle ScholarPubMed
Liu, P, Aslan, S, Li, X, et al. Perfusion deficit to cholinergic challenge in veterans with Gulf War Illness. Neurotoxicology 2011;32(2):242–6.CrossRefGoogle ScholarPubMed
Bokkers, RP, Bremmer, JP, van Berckel, BN, et al. Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab 2010;30(1):222–9.CrossRefGoogle Scholar
Qiu, M, Paul Maguire, R, Arora, J, et al. Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subject. Magn Reson Med 2010;63(2): 374–84.CrossRefGoogle Scholar
Wissmeyer, M, Altrichter, S, Pereira, VM, et al. Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol 2010;37(2):127–30.CrossRefGoogle ScholarPubMed
Xu, G, Rowley, HA, Wu, G, et al. Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 2010;23(3):286–93.Google Scholar
Lüdemann, L, Warmuth, C, Plotkin, M, et al. Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur J Radiol 2009;70(3):465–74.CrossRefGoogle Scholar
Chen, JJ, Wieckowska, M, Meyer, E, Pike, GB.Cerebral blood flow measurement using fMRI and PET: a cross-validation study. Int J Biomed Imaging 2008;2008:516359.CrossRefGoogle ScholarPubMed
Kimura, H, Kado, H, Koshimoto, Y, et al. Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 2005;22(2):189–98.CrossRefGoogle ScholarPubMed
Newberg, AB, Wang, J, Rao, H, et al. Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI-PET scanning. Neuroimage 2005;28(2):500–6.CrossRefGoogle ScholarPubMed
Liu, HL, Kochunov, P, Hou, J, et al. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 2001;45(3):431–5.3.0.CO;2-E>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×