Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-06T06:21:20.224Z Has data issue: false hasContentIssue false

6 - Evolutionary Demography of the Human Mortality Profile

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47(3), 877–87.CrossRefGoogle ScholarPubMed
Abrams, P. A. (1991). The fitness costs of senescence: the evolutionary importance of events in early adult life. Evolutionary Ecology, 5, 343–60.CrossRefGoogle Scholar
Borgerhoff Mulder, M. (1998). The demographic transition: are we any closer to an evolutionary explanation? Trends in Ecology and Evolution, 13, 266–70.CrossRefGoogle Scholar
Bronikowski, A. M., Altmann, J., Brockman, D. K., et al. (2011). Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science, 331, 1325–8.CrossRefGoogle ScholarPubMed
Burger, O., Baudisch, A. & Vaupel, J. W. (2012). Human mortality improvement in evolutionary context. Proceedings of the National Academy of Sciences of the United States of America, 109, 18210–14.Google ScholarPubMed
Burger, O., DeLong, J. P. & Hamilton, M. J. (2011). Industrial energy use and the human life history. Scientific Reports, 1, 56.CrossRefGoogle ScholarPubMed
Burger, O. & Missov, T. I. (2016). Evolutionary Theory and the Problem of Correlated Gompertz Parameters. Journal of Theoretical Biology, 408, 3441. http://dx.doi.org/10.1016/j.jtbi.2016.08.002CrossRefGoogle ScholarPubMed
Carey, J. R. & Judge, D. S. (2001). Life span extension in humans is self-reinforcing: a general theory of longevity. Population and Development Review, 27, 411–36.CrossRefGoogle Scholar
Carnes, B. A., Holden, L. R., Olshansky, S. J., et al. (2006). Mortality partitions and their relevance to research on senescence. Biogerontology, 7, 183–98.CrossRefGoogle ScholarPubMed
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22, 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2000). Fisher, Medawar, Hamilton and the evolution of aging. Genetics, 156, 927–31.CrossRefGoogle ScholarPubMed
Charlesworth, B. & Partridge, L. (1997). Ageing: levelling of the grim reaper. Current Biology, 7, R440–2.CrossRefGoogle ScholarPubMed
Charnov, E. L. & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191–4.CrossRefGoogle Scholar
Chen, H. & Maklakov, A. A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Chu, C. Y. C. & Lee, R. D. (2006). The co-evolution of intergenerational transfers and longevity: An optimal life history approach. Theoretical Population Biology, 69, 193201.Google Scholar
DeLong, J. P., Burger, O. & Hamilton, M. J. (2010). Current demographics suggest future energy supplies will be inadequate to slow human population growth. PLoS ONE, 5, e13206.CrossRefGoogle Scholar
Finch, C. E. (2012). Evolution of the human lifespan, past, present, and future: phases in the evolution of human life expectancy in relation to the inflammatory load. Proceedings of the American Philosophical Society, 156, 944.Google Scholar
Finch, C. E. (1994). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Finch, C. E., Pike, M. C. & Witten, M. (1990). Slow mortality rate accelerations during aging in some animals approximate that of humans. Science, 249, 902–5.CrossRefGoogle ScholarPubMed
Fogel, R. W. (1997). Economic and social structure for an ageing population. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 352, 1905–17.CrossRefGoogle ScholarPubMed
Fogel, R. W. & Costa, D. L. (1997). A theory of technophysioevolution, with some implications for forecasting population, health care costs, and pension costs. Demography, 34, 4966.CrossRefGoogle ScholarPubMed
Gause, G. F. (1934). The Struggle for Existence (Baltimore: Williams & Wilkins).CrossRefGoogle ScholarPubMed
Gurven, M. & Fenelon, A. (2009). Has actuarial aging ‘slowed’ over the past 250 years? A comparison of small-scale subsistence populations and European cohorts. Evolution: International Journal of Organic Evolution, 63, 1017–35.CrossRefGoogle Scholar
Gurven, M. & Kaplan, H. (2007). Longevity among hunter-gatherers: a cross-cultural examination. Population and Development Review, 33, 321–65.CrossRefGoogle Scholar
Gurven, M., Stieglitz, J., Hooper, P. L., et al. (2012). From the womb to the tomb: the role of transfers in shaping the evolved human life history. Experimental Gerontology 47(10), 807–13.CrossRefGoogle Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hawkes, K. (2010). How grandmother effects plus individual variation in frailty shape fertility and mortality: guidance from human–chimpanzee comparisons. Proceedings of the National Academy of Sciences of the United States of America 107(2), 8977–84.Google ScholarPubMed
Hawkes, K., Smith, K. R. & Blevins, J. K. (2012). Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity? Evolution, 66, 103–14.CrossRefGoogle Scholar
Hawkes, K., Smith, K. R. & Robson, S. L. (2009). Mortality and fertility rates in humans and chimpanzees: how within-species variation complicates cross-species comparisons. American Journal of Human Biology, 21, 578–86.CrossRefGoogle ScholarPubMed
Hill, K., Barton, M. & Hurtado, A. M. (2009). The emergence of human uniqueness: characters underlying behavioral modernity. Evolutionary Anthropology: Issues, News, and Reviews, 18, 187200.CrossRefGoogle Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kirk, D. (1996). Demographic transition theory. Population Studies, 50, 361–87.CrossRefGoogle ScholarPubMed
Le Cunff, Y., Baudisch, A. & Pakdaman, K. (2013). How evolving heterogeneity distributions of resource allocation strategies shape mortality patterns. PLoS Comput Biol, 9, e1002825.CrossRefGoogle ScholarPubMed
Lee, R. D. (1987). Population dynamics of humans and other animals. Demography, 24, 443–65.CrossRefGoogle ScholarPubMed
Lee, R. D. (2003). Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. Proceedings of the National Academy of Sciences of the United States of America, 100, 9637–42.Google Scholar
Lenart, A. & Missov, T. I. (2014). Goodness-of-fit tests for the Gompertz distribution. Communications in Statistics: Theory and Methods, 2014, 138.Google Scholar
Levitis, D. A., Burger, O. & Lackey, L. B. (2013). The human post-fertile lifespan in comparative evolutionary context. Evolutionary Anthropology, 22, 6679.CrossRefGoogle ScholarPubMed
Makeham, W. M. (1867). On the law of mortality. Journal of the Institute of Actuaries, 1866, 325–58.Google Scholar
Maklakov, A. A., Rowe, L. & Friberg, U. (2015). Why organisms age: evolution of senescence under positive pleiotropy? BioEssays 37, 802–7.CrossRefGoogle ScholarPubMed
Oeppen, J. & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296, 1029.CrossRefGoogle ScholarPubMed
Preston, S. H. (1975). The changing relation between mortality and level of economic development. Population Studies, 29, 231–48.CrossRefGoogle ScholarPubMed
Preston, S. H. (2007). The changing relation between mortality and level of economic development. International Journal of Epidemiology, 36, 484–90.Google ScholarPubMed
Promislow, D. & Harvey, P. (1990). Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology, 220, 417–37.CrossRefGoogle Scholar
Reznick, D. N., Bryant, M. J., Roff, D. et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431, 1095–9.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2010). Life-history connections to rates of aging in terrestrial vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 107, 10314–19.Google ScholarPubMed
Rose, M. R. (1991). Evolutionary Biology of Aging (New York: Oxford University Press).Google Scholar
Rossi, I. A., Rousson, V. & Paccaud, F. (2012). The contribution of rectangularization to the secular increase of life expectancy: an empirical study. International Journal of Epidemiology 42, 250–8.Google Scholar
Sibly, R. M., Barker, D., Denham, M. C., et al. (2005). On the regulation of populations of mammals, birds, fish, and insects. Science, 309, 607–10.CrossRefGoogle ScholarPubMed
Temby, O. F. & Smith, K. R. (2014). The association between adult mortality risk and family history of longevity: the moderating effects of socioeconomic status. Journal of Biosocial Science, 46, 703–16.Google ScholarPubMed
Tuljapurkar, S. D., Puleston, C. O. & Gurven, M. D. (2007). Why men matter: mating patterns drive evolution of human lifespan. PLoS One, 2, e785.CrossRefGoogle ScholarPubMed
Vaupel, J. W. (2010). Biodemography of human ageing. Nature, 464, 536–42.CrossRefGoogle ScholarPubMed
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Walsh, M. R., Whittington, D. & Walsh, M. J. (2014). Does variation in the intensity and duration of predation drive evolutionary changes in senescence? Journal of Animal Ecology 83, 1279–88.CrossRefGoogle ScholarPubMed
Wells, J. C. (2007). The programming effects of early growth. Early Human Development, 83, 743–8.CrossRefGoogle ScholarPubMed
Wells, J. C. (2011). The thrifty phenotype: an adaptation in growth or metabolism? American Journal of Human Biology, 23, 6575.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 1957, 398411.CrossRefGoogle Scholar
Williams, P. D., Day, T., Fletcher, Q. & Rowe, L. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21, 458–63.CrossRefGoogle ScholarPubMed
Wrigley, E. A. (1990). Continuity, Chance and Change: The Character of the Industrial Revolution in England (Cambridge University Press).Google Scholar
Wrigley, E. A. (2010). Energy and the English Industrial Revolution (Cambridge University Press).CrossRefGoogle Scholar
Yashin, A. I., Ukraintseva, S. V., Boiko, S. I. & Arbeev, K. G. (2002). Individual aging and mortality rate: how are they related? Proceedings of the Royal Society of London Series B: Biological Research, 49, 206–17.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×