Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T17:46:50.393Z Has data issue: false hasContentIssue false

Fluorographene: Synthesis and sensing applications

Published online by Cambridge University Press:  20 April 2017

Tharangattu N. Narayanan*
Affiliation:
TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075, India
Ravi K. Biroju
Affiliation:
TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075, India
Venkatesan Renugopalakrishnan
Affiliation:
Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
*
a) Address all correspondence to this author. e-mail: tn_narayanan@yahoo.com, tnn@tifrh.res.in
Get access

Abstract

This article features the recent developments in fluorographene (FG) and its other functional forms such as fluorographene oxide—their synthesis, fluorination, defluorination, and applications. FG is identified as an important functional derivative of graphene, and FG’s multifunctionalities make it as an ideal candidate for diverse fields, say from photovoltaic to bio-medical diagnosis, imaging, sensing, and therapy. Here the possibilities of FG as a biomedical sensing platform is discussed in detail and the potentials of FG based electrochemical and conductometric sensing platforms are unraveled. The importance of fluorine control as well as the other key factors need to be considered while choosing FG based bio-sensing platforms are also discussed.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

A previous error in this article has been corrected, see 10.1557/jmr.2017.245.

References

REFERENCES

Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007).Google Scholar
Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622 (2000).Google Scholar
Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).Google Scholar
Novesolov, K.: The rise of graphene. Nature 6, 1849 (2007).Google Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).CrossRefGoogle ScholarPubMed
Zhang, Y., Tan, Y-W., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201 (2005).Google Scholar
Tadi, K.K., Pal, S., and Narayanan, T.N.: Fluorographene based ultrasensitive ammonia sensor. Sci. Rep. 6, 25221 (2016).Google Scholar
Krishna, M.B.M., Man, M.K.L., Vinod, S., Chin, C., Harada, T., Taha-Tijerina, J., Tiwary, C.S., Nguyen, P., Chang, P., Narayanan, T.N., Rubio, A., Ajayan, P.M., Talapatra, S., and Dani, K.M.: Engineering photophenomena in large, 3D structures composed of self-assembled van der Waals heterostructure flakes. Adv. Opt. Mater. 3(11), 1551 (2015).Google Scholar
Song, L., Liu, Z., Reddy, A.L.M., Narayanan, N.T., Taha-Tijerina, J., Peng, J., Gao, G., Lou, J., Vajtai, R., and Ajayan, P.M.: Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 24(36), 4878 (2012).Google Scholar
Chen, Y., Zhang, B., Liu, G., Zhuang, X., and Kang, E-T.: Graphene and its derivatives: Switching ON and OFF. Chem. Soc. Rev. 41(13), 4688 (2012).CrossRefGoogle ScholarPubMed
Nguyen, K.T. and Zhao, Y.: Graphene and graphene derivatives in biosensing, imaging, therapeutics, and genetic engineering. Reviews in Cell Biology and Molecular Medicine 1, 386420 (2015).Google Scholar
Galande, C., Gao, W., Mathkar, A., Dattelbaum, A.M., Narayanan, T.N., Mohite, A.D., and Ajayan, P.M.: Science and engineering of graphene oxide. Part. Part. Syst. Charact. 31(6), 619 (2014).Google Scholar
Sudeep, P.M., Vinayasree, S., Mohanan, P., Ajayan, P.M., Narayanan, T.N., and Anantharaman, M.R.: Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl. Phys. Lett. 106(22), 221603 (2015).Google Scholar
Bharathidasan, T., Narayanan, T.N., Sathyanaryanan, S., and Sreejakumari, S.S.: Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films. Carbon 84, 207 (2015).Google Scholar
Romero-Aburto, R., Narayanan, T.N., Nagaoka, Y., Hasumura, T., Mitcham, T.M., Fukuda, T., Cox, P.J., Bouchard, R.R., Maekawa, T., Kumar, D.S., Torti, S.V., Mani, S.A., and Ajayan, P.M.: Fluorinated graphene oxide; A new multimodal material for biological applications. Adv. Mater. 25(39), 5632 (2013).CrossRefGoogle ScholarPubMed
Tang, S. and Cao, Z.: Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C 116(15), 8778 (2012).Google Scholar
Feng, W., Long, P., Feng, Y., and Li, Y.: Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 3(7), 1500413 (2016).Google Scholar
Jaison, M.J., Narayanan, T.N., Prem Kumar, T., and Pillai, V.K.: A single-step room-temperature electrochemical synthesis of nitrogen-doped graphene nanoribbons from carbon nanotubes. J. Mater. Chem. A 3(35), 18222 (2015).CrossRefGoogle Scholar
Yang, Z., Sun, Y., Alemany, L.B., Narayanan, T.N., and Billups, W.E.: Birch reduction of graphite. Edge and interior functionalization by hydrogen. J. Am. Chem. Soc. 134(45), 18689 (2012).Google Scholar
Poh, H.L., Šimek, P., Sofer, Z., and Pumera, M.: Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. –Eur. J. 19(8), 2655 (2013).Google Scholar
Mathkar, A., Narayanan, T.N., Alemany, L.B., Cox, P., Nguyen, P., Gao, G., Chang, P., Romero-Aburto, R., Mani, S.A., and Ajayan, P.M.: Synthesis of fluorinated graphene oxide and its amphiphobic properties. Part. Part. Syst. Charact. 30(3), 266 (2013).Google Scholar
Radhakrishnan, S., Samanta, A., Sudeep, P.M., Maldonado, K.L., Mani, S.A., Acharya, G., Tiwary, C.S., Singh, A.K., and Ajayan, P.M.: Metal-free dual modal contrast agents based on fluorographene quantum dots. Part. Part. Syst. Charact. 34(1), 1600221 (2016).Google Scholar
Mazanek, V., Jankovsky, O., Luxa, J., Sedmidubsky, D., Janousek, Z., Sembera, F., Mikulics, M., and Sofer, Z.: Tuning of fluorine content in graphene: Towards large-scale production of stoichiometric fluorographene. Nanoscale 7(32), 13646 (2015).Google Scholar
Boopathi, S., Narayanan, T.N., and Senthil Kumar, S.: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives. Nanoscale 6(17), 10140 (2014).Google Scholar
Pan, H., Zhu, S., and Mao, L.: Graphene nanoarchitectonics: Approaching the excellent properties of graphene from microscale to macroscale. J. Inorg. Organomet. Polym. Mater. 25(2), 179 (2015).Google Scholar
Chang, H., Cheng, J., Liu, X., Gao, J., Li, M., Li, J., Tao, X., Ding, F., and Zheng, Z.: Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem. –Eur. J. 17(32), 8896 (2011).Google Scholar
Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., and Huang, S.: Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 48(7), 1027 (2012).Google Scholar
Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., and Liu, Z.: Photochemical chlorination of graphene. ACS Nano 5(7), 5957 (2011).Google Scholar
Mitkin, V.N.: Types of inorganic fluorocarbon polymer materials and structure–property correlation problems. J. Struct. Chem. 44(1), 82 (2003).Google Scholar
Kniaz, K., Fischer, J.E., Selig, H., Vaughan, G.B.M., Romanow, W.J., Cox, D.M., Chowdhury, S.K., McCauley, J.P., Strongin, R.M., and Smith, A.B.: Fluorinated fullerenes: Synthesis, structure, and properties. J. Am. Chem. Soc. 115(14), 6060 (1993).Google Scholar
Mickelson, E.T., Chiang, I.W., Zimmerman, J.L., Boul, P.J., Lozano, J., Liu, J., Smalley, R.E., Hauge, R.H., and Margrave, J.L.: Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B 103(21), 4318 (1999).Google Scholar
Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., and Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10(8), 3001 (2010).Google Scholar
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H-M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., and Geim, A.K.: Fluorographene: A two-dimensional counterpart of teflon. Small 6(24), 2877 (2010).Google Scholar
Dalvi, V.H. and Rossky, P.J.: Molecular origins of fluorocarbon hydrophobicity. Proc. Natl. Acad. Sci. 107(31), 13603 (2010).Google Scholar
Hu, Y.H.: The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small 10(8), 1451 (2014).Google Scholar
Vineesh, T.V., Nazrulla, M.A., Krishnamoorthy, S., Narayanan, T.N., and Alwarappan, S.: Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Appl. Mater. Today 1(2), 74 (2015).Google Scholar
Philipp, S., Daniel, N., Thomas, M., Julio, T.B., Esteban, M., Shannon, X.W., Stephan, Q., Matthias, F.B., Volckmar, N., Christian, F.R., Michael, C., Markus, H., and Rainer, B.: A quantum information processor with trapped ions. New J. Phys. 15(12), 123012 (2013).Google Scholar
Withers, F., Bointon, T.H., Dubois, M., Russo, S., and Craciun, M.F.: Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 11(9), 3912 (2011).Google Scholar
Wang, Z., Wang, J., Li, Z., Gong, P., Liu, X., Zhang, L., Ren, J., Wang, H., and Yang, S.: Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15), 5403 (2012).CrossRefGoogle Scholar
Tadi, K.K., Bikkarolla, S.K., Bhorkar, K., Pal, S., Kunchur, N., Indulekh, N., Radhakrishnan, S., Biroju, R.K., and Narayanan, T.N.: Defluorination of fluorographene oxide via solvent interactions. Part. Part. Syst. Charact. (2017). doi: 10.1002/ppsc.201600346.Google Scholar
Wang, X., Wang, W., Liu, Y., Ren, M., Xiao, H., and Liu, X.: Controllable defluorination of fluorinated graphene and weakening of C–F bonding under the action of nucleophilic dipolar solvent. Phys. Chem. Chem. Phys. 18(4), 3285 (2016).Google Scholar
Urbanova, V., Karlicky, F., Matej, A., Sembera, F., Janousek, Z., Perman, J.A., Ranc, V., Cepe, K., Michl, J., Otyepka, M., and Zboril, R.: Fluorinated graphenes as advanced biosensors—Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 8(24), 12134 (2016).Google Scholar
Valappil, M.O., Alwarappan, S., and Narayanan, T.N.: Atomic layers in electrochemical biosensing applications—Graphene and beyond. Curr. Org. Chem. 19(12), 1163 (2015).Google Scholar
Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Tekin, H.C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D., and Renugopalakrishanan, V.: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9), 513 (2015).Google Scholar
Tadi, K.K., Narayanan, T.N., Arepalli, S., Banerjee, K., Viswanathan, S., Liepmann, D., Ajayan, P.M., and Renugopalakrishnan, V.: Engineered 2D nanomaterials–protein interfaces for efficient sensors. J. Mater. Res. 30(23), 3565 (2015).Google Scholar

A correction has been issued for this article: