Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T22:31:45.530Z Has data issue: false hasContentIssue false

The role of reference frames in memory recollection

Published online by Cambridge University Press:  03 January 2020

Giuseppe Riva
Affiliation:
Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro Cuore, 20123Milan, Italygiuseppe.riva@unicatt.itdaniele.dilernia@gmail.com Applied Technology for Neuro-Psychology Laboratory, Istituto Auxologico Italiano (IRCCS), 20145Milan, Italy
Daniele Di Lernia
Affiliation:
Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro Cuore, 20123Milan, Italygiuseppe.riva@unicatt.itdaniele.dilernia@gmail.com
Andrea Serino
Affiliation:
MySpace Lab, Department of Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011Lausanne, Switzerland. andrea.serino@mindmaze.chsilvia.serino@gmail.com
Silvia Serino
Affiliation:
MySpace Lab, Department of Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011Lausanne, Switzerland. andrea.serino@mindmaze.chsilvia.serino@gmail.com

Abstract

In this commentary on Bastin et al., we suggest that spatial context plays a critical role in the encoding and retrieval of events. Specifically, the translation process between the viewpoint-independent content of a memory and the viewpoint-dependent stimuli activating the retrieval (mental frame syncing) plays a critical role in spatial memory recollection. This perspective also provides an explanatory model for pathological disturbances such as Alzheimer's disease.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, E., Landeira-Fernandez, J. & Mograbi, D. C. (2016) Metacognition and perspective-taking in Alzheimer's disease: A mini-review. Frontiers in Psychology 7: article no.1812. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112262/.CrossRefGoogle Scholar
Bicanski, A. & Burgess, N. (2018) A neural-level model of spatial memory and imagery. eLife 7: e33752. (Online publication). doi:10.7554/eLife.33752. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122954/.CrossRefGoogle Scholar
Bird, C. M., Bisby, J. A. & Burgess, N. (2012) The hippocampus and spatial constraints on mental imagery. Frontiers in Human Neuroscience 6: article no. 142. doi:10.3389/fnhum.2012.00142. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354615/.CrossRefGoogle Scholar
Burgess, N., Becker, S., King, J. A. & O'Keefe, J. O. (2001) Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society of London, 356, 1493–503.CrossRefGoogle ScholarPubMed
Byrne, P., Becker, S. & Burgess, N. (2007) Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review 114(2):340–75.CrossRefGoogle ScholarPubMed
Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P. & Riva, G. (2017) Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews 80, 605–21. doi:10.1016/j.neubiorev.2017.07.012.CrossRefGoogle ScholarPubMed
Gomez, A., Rousset, S. & Baciu, M. (2009) Egocentric-updating during navigation facilitates episodic memory retrieval. Acta Psychologica (Amsterdam) 132(3):221–27. doi:10.1016/j.actpsy.2009.07.003.CrossRefGoogle ScholarPubMed
Graham, K. S., Barense, M. D. & Lee, A. C. (2010) Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48(4):831–53. doi: 10.1016/j.neuropsychologia.2010.01.001.CrossRefGoogle ScholarPubMed
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801806. doi:10.1038/nature03721.CrossRefGoogle ScholarPubMed
Julian, J. B., Keinath, A. T., Marchette, S. A. & Epstein, R. A. (2018) The Neurocognitive Basis of Spatial Reorientation. Current Biology 28(17):R1059R1073. doi:10.1016/j.cub.2018.04.057.CrossRefGoogle ScholarPubMed
Lithfous, S., Dufour, A. & Despres, O. (2013) Spatial navigation in normal aging and the prodromal stage of Alzheimer's disease: Insights from imaging and behavioral studies. Ageing Research Review 12(1):201–13. doi:10.1016/j.arr.2012.04.007.CrossRefGoogle ScholarPubMed
Nadel, L., Samsonovich, A., Ryan, L. & Moscovitch, M. (2000) Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results. Hippocampus 10(4):352–68. doi:10.1002/1098-1063(2000)10:4.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
O'Keefe, J. & Dostrovsky, J. (1971) The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain research 34:171–75. doi:10.1016/0006-8993(71)90358-1.CrossRefGoogle ScholarPubMed
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press.Google Scholar
Serino, S., Morganti, F., Di Stefano, F. & Riva, G. (2015) Detecting early egocentric and allocentric impairments deficits in Alzheimer's disease: An experimental study with virtual reality. Frontiers in Aging Neuroscience 7: article 88. (Online publication). doi: 10.3389/fnagi.2015.00088. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438252/CrossRefGoogle Scholar
Serino, S., Pedroli, E., Tuena, C., De Leo, G., Stramba-Badiale, M., Goulene, K., Mariotti, N. G. & Riva, G. (2017) A novel Virtual Reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer's Disease: A development-of-concept trial. Frontiers in Aging Neuroscience 9: article no. 240. doi:10.3389/fnagi.2017.00240. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5529401/.CrossRefGoogle Scholar
Serino, S. & Riva, G. (2013) Getting lost in Alzheimer's disease: A break in the mental frame syncing. Medical Hypotheses 80(4):416–21. doi:10.1016/j.mehy.2012.12.031.CrossRefGoogle ScholarPubMed
Serino, S. & Riva, G. (2017) The proactive self in space: How egocentric and allocentric spatial impairments contribute to anosognosia in Alzheimer's disease. Journal of Alzheimer's disease: JAD 55(3):881–92. doi:10.3233/JAD-160676.CrossRefGoogle ScholarPubMed
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B. & Moser, E. I. (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909):1865–68. doi:10.1126/science.1166466.CrossRefGoogle ScholarPubMed
Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience 10(2):420–35.CrossRefGoogle Scholar