Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T23:18:14.338Z Has data issue: false hasContentIssue false

Comparative analyses of speech and language converge on birds

Published online by Cambridge University Press:  17 December 2014

Gabriël J. L. Beckers
Affiliation:
Cognitive Neurobiology and Helmholtz Institute, Departments of Psychology and Biology, Utrecht University, 3584 CH Utrecht, The Netherlands. g.j.l.beckers@uu.nlhttp://gbeckers.nlj.j.bolhuis@uu.nlhttp://www.bio.uu.nl/behaviour/Bolhuis
Robert C. Berwick
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. berwick@csail.mit.eduhttp://lids.mit.edu/people/faculty/berwick-robert.html
Johan J. Bolhuis
Affiliation:
Cognitive Neurobiology and Helmholtz Institute, Departments of Psychology and Biology, Utrecht University, 3584 CH Utrecht, The Netherlands. g.j.l.beckers@uu.nlhttp://gbeckers.nlj.j.bolhuis@uu.nlhttp://www.bio.uu.nl/behaviour/Bolhuis

Abstract

Unlike nonhuman primates, thousands of bird species have articulatory capabilities that equal or surpass those of humans, and they develop their vocalizations through vocal imitation in a way that is very similar to how human infants learn to speak. An understanding of how speech mechanisms have evolved is therefore unlikely to yield key insights into how the human brain is special.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. & Watanabe, D. (2011) Songbirds possess the spontaneous ability to discriminate syntactic rules. Nature Neuroscience 14:1067–74.CrossRefGoogle ScholarPubMed
Beckers, G. J. L. (2013) Peripheral mechanisms of vocalization in birds: A comparison with human speech. In: Birdsong, speech, and language. Exploring the evolution of mind and brain, ed. Bolhuis, J. J. & Everaert, M., pp. 399422. MIT Press.CrossRefGoogle Scholar
Beckers, G. J. L., Bolhuis, J. J., Okanoya, K. & Berwick, R. C. (2012) Birdsong neurolinguistics: Songbird context-free grammar claim is premature. NeuroReport 23:139–45.CrossRefGoogle ScholarPubMed
Beckers, G. J. L., Nelson, B. S. & Suthers, R. A. (2004) Vocal tract filtering by lingual articulation in a parrot. Current Biology 14:1592–97.CrossRefGoogle Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N. & Bolhuis, J. J. (2013) Evolution, brain, and the nature of language. Trends in Cognitive Sciences 17(2):8998.CrossRefGoogle ScholarPubMed
Berwick, R. C., Okanoya, K., Beckers, G. J. L. & Bolhuis, J. J. (2011) Songs to syntax: The linguistics of birdsong. Trends in Cognitive Sciences 15(3):113–21.CrossRefGoogle ScholarPubMed
Bolhuis, J. J. & Everaert, M., eds. (2013) Birdsong, speech and language. Exploring the evolution of mind and brain. MIT Press.CrossRefGoogle Scholar
Bolhuis, J. J., Okanoya, K. & Skarff, C. (2010) Twitter evolution: Converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience 11(11):747–59.CrossRefGoogle ScholarPubMed
Jarvis, E. D. (2004b) Learned birdsong and the neurobiology of human language. In: Behavioral neurobiology of birdsong, ed. Zeigler, H. P., Marler, P., pp. 749–77. (Annals of the New York Academy of Sciences, vol. 1016). New York Academy of Sciences.Google ScholarPubMed