Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T01:37:55.445Z Has data issue: false hasContentIssue false

Molecular dynamics simulation of dodecyl dimethyl benzyl ammonium cation-intercalated montmorillonite

Published online by Cambridge University Press:  16 February 2024

Haotian Su
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, P.R. China
Yingchun Zhang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, P.R. China
Jinhong Zhou*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, P.R. China
Qingfeng Hou
Affiliation:
State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation (CNPC), Beijing, P.R. China
*
*Corresponding author: Jinhong Zhou; Email: zjh12387@126.com

Abstract

Dodecyl dimethyl benzyl ammonium (DDBA) is a novel cation surfactant used to modify clay minerals. DDBA-intercalated montmorillonite is formed by the ion exchange between DDBA cations in the solution and cations in the montmorillonite interlayers. By using molecular dynamics simulations, we investigated the basal spacings, interlayer structures and dynamics of DDBA-montmorillonites. The results showed that the calculated basal spacings agreed well with experimental values and that the layering behaviours of DDBA had been revealed. The ammonium groups of DDBA ions preferred staying close to the centre of Si–O six-member rings. The benzyl group and lauryl group were oriented in parallel in the monolayer state, whereas they were tilted in other states. DDBA ions have very low mobility in the interlayer region, indicating that the negatively charged montmorillonite surfaces can effectively fix this positively charged surfactant. The microscopic structures and dynamics obtained in the present study provide atomic-scale insights into the properties of DDBA-intercalated clay minerals.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chunhui Zhou

References

Allen, M.P. & Tildesley, D.J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford, UK, 385 pp.Google Scholar
Bala, P., Samantaraya, B.K. & Srivastava, S.K. (2000) Synthesis and characterization of Na-montmorillonite-alkylammonium intercalation compounds. Materials Research Bulletin, 15, 17171724.CrossRefGoogle Scholar
Barber, O.W. & Hartmann, E.M. (2022) Benzalkonium chloride: a systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Critical Reviews in Environmental Science and Technology, 52, 26912719.CrossRefGoogle Scholar
Barrer, R.M. & MacLeod, D.M. (1995) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Transactions of the Faraday Society, 51, 12901300.CrossRefGoogle Scholar
Bhatt, J., Somani, R.S., Mody, H.M. & Bajaj, H.C. (2013) Rheological study of organoclays prepared from Indian bentonite: effect of dispersing methods. Applied Clay Science, 83–84, 106114.CrossRefGoogle Scholar
Brigatti, M.F., Galan, E. & Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. Pp. 1986 in: Handbook of Clay Science. Development in Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Chang, F.-R.C., Skipper, N.T. & Sposito, G. (1997) Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates. Langmuir, 13, 20742082.CrossRefGoogle Scholar
Chun, Y., Sheng, G. & Boyd, S.A. (2003) Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays and Clay Minerals, 51, 415420.CrossRefGoogle Scholar
Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M. et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 51795197.CrossRefGoogle Scholar
Cygan, R.T., Liang, J.J. & Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 12551266.CrossRefGoogle Scholar
Cygan, R.T., Romanov, V.N. & Myshakin, E.M. (2012) Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field. Journal of Physical Chemistry C, 116, 1307913091.CrossRefGoogle Scholar
Cygan, R.T., Greathouse, J.A. & Kalinichev, A.G. (2021) Advances in ClayFF molecular simulation of layered and nanoporous materials and their aqueous interfaces. Journal of Physical Chemistry C, 125, 1757317589.CrossRefGoogle Scholar
Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. & Hagler, A.T. (1988) Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug–receptor system. Proteins: Structure, Function and Genetics, 4, 3147.CrossRefGoogle ScholarPubMed
Fellah, M., Hezil, N., Guerfi, K., Djellabi, R., Montagne, A., Iost, A. et al. (2021) Mechanistic pathways of cationic and anionic surfactants sorption by kaolinite in water. Environmental Science and Pollution Research, 28, 73077321.CrossRefGoogle ScholarPubMed
Flores, F.M., Loveira, E.L., Yarza, F., Candal, R. & Torres Sánchez, R.M. (2017) Benzalkonium chloride surface adsorption and release by two montmorillonites and their modified organomontmorillonites. Water, Air, & Soil Pollution, 228, 42.CrossRefGoogle Scholar
Frenkel, D. & Smit, B. (2002) Understanding Molecular Simulation, 2nd edition. Academic Press, New York, NY, USA, 638 pp.Google Scholar
Fu, M.H., Zhang, Z.Z. & Low, P. F. (1990) Changes in the properties of a montmorillonite – water system during the adsorption and desorption of water: hysteresis. Clays and Clay Minerals, 38, 486492.CrossRefGoogle Scholar
Ghavami, M., Zhao, Q., Javadi, S., Jangam, J.S.D., Jasinski, J.B. & Saraei, N. (2017) Change of organobentonite interlayer microstructure induced by sorption of aromatic and petroleum hydrocarbons – a combined study of laboratory characterization and molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 324334.CrossRefGoogle Scholar
Giese, R.F. & Van Oss, C.J. (2002) Colloid and Surface Properties of Clays and Related Minerals. CRC Press, Boca Raton, FL, USA, 312 pp.CrossRefGoogle Scholar
Gieseking, J.E. (1939) The mechanism of cation exchange in the montmorillonite–beidellite–nontronite type of clay minerals. Soil Science, 47, 114.CrossRefGoogle Scholar
Hackett, E., Manias, E. & Giannelis, E.P. (1998) Molecular dynamics simulations of organically modified layered silicates. Journal of Chemical Physics, 108, 74107415.CrossRefGoogle Scholar
He, H.P., Ma, Y., Zhu, J., Yuan, P. & Qing, Y. (2010) Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration, Applied Clay Science, 48, 6772.CrossRefGoogle Scholar
Heinz, H., Vaia, R.A. & Farmer, B.L. (2006) Interaction energy and surface reconstruction between sheets of layered silicates. Journal of Chemical Physics, 124, 224713.CrossRefGoogle ScholarPubMed
Huang, Y., Ma, X.Y., Liang, G.Z. & Yan, H.X. (2007) Interactions in organic rectorite composite gel polymer electrolyte. Clay Minerals, 42, 463470.CrossRefGoogle Scholar
Huang, Y., Ma, X.Y., Liang, G.Z. & Yan, H.X. (2008) Adsorption of phenol with modified rectorite from aqueous solution. Chemical Engineering Journal, 141, 18.CrossRefGoogle Scholar
Huang, Y., Ma, X.Y., Liang, G.Z. & Yan, H.X. (2009) Structure and properties of polypropylene/organic rectorite nanocomposites. Clay Minerals, 44, 3550.CrossRefGoogle Scholar
Huang, Y., Wang, X., He, X. & Yang, Y. (2010) Gel polymer electrolyte based on poly(methyl methacrylate-maleic anhydride)–poly(ethylene glycol) monomethyl ether and organophilic rectorite clay. Clay Minerals, 45, 431440.CrossRefGoogle Scholar
Huskić, M., Žagar, E. & Žigon, M. (2012) The influence of a quaternary ammonium salt and MMT on the in situ intercalative polymerization of PMMA. European Polymer Journal, 48, 15551560.CrossRefGoogle Scholar
Ilari, R., Etcheverry, M., Waiman, V.C. & Zanini, G. (2021) A simple cation exchange model to assess the competitive adsorption between the herbicide paraquat and the biocide benzalkonium chloride on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125797.CrossRefGoogle Scholar
Khan, A.H., Macfie, S.M. & Ray, M.B. (2017) Sorption and leaching of benzalkonium chlorides in agricultural soils. Journal of Environmental Management, 196, 2635.CrossRefGoogle ScholarPubMed
Kung, K.H.S. & Hayes, K.F. (1993) Fourier-transform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica. Langmuir, 9, 263267.CrossRefGoogle Scholar
Kwolek, T., Hodorowicz, M., Stadnicka, K. & Czapkiewicz, J. (2003) Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. Journal of Colloid and Interface Science, 264, 1419.CrossRefGoogle ScholarPubMed
Lagaly, G. (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 4351.CrossRefGoogle Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 146 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (Mermut, A.R., editor). Clay Minerals Society, Aurora, CO, USA.Google Scholar
Lagaly, G. & Weiss, A. (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen. Kolloid-Z.u.Z.Polymere, 243, 4855.CrossRefGoogle Scholar
Lagaly, G., Ogawa, M. & Dékány, I. (2006) Clay mineral organic interactions. Pp. 309377 in: Handbook of Clay Science (Bergaya, F. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Laird, D.A., Scott, A.D. & Fenton, T.E. (1989) Evaluation of the alkylammonium method of determining layer charge. Clays and Clay Minerals, 37, 4146.CrossRefGoogle Scholar
Lanson, B., Mignon, P., Velde, M., Bauer, A., Lanson, M., Findling, N. & del Valle, C.P. (2022) Determination of layer charge density in expandable phyllosilicates with alkylammonium ions: a combined experimental and theoretical assessment of the method. Applied Clay Science, 229, 106665.CrossRefGoogle Scholar
Li, P., Khan, M.A., Xia, M., Lei, W., Zhu, S. & Wang, F. (2019) Efficient preparation and molecular dynamic (MD) simulations of Gemini surfactant modified layered montmorillonite to potentially remove emerging organic contaminants from wastewater. Ceramics International, 45, 1078210791.CrossRefGoogle Scholar
Li, Y., Shi, M.X., Xia, M.Z. & Wang, F.Y. (2021) The enhanced adsorption of ampicillin and amoxicillin on modified montmorillonite with dodecyl dimethyl benzyl ammonium chloride: experimental study and density functional theory calculation. Advanced Powder Technology, 32, 34653475.CrossRefGoogle Scholar
Liu, X.D., Lu, X.C., Wang, R.C., Zhou, H.Q. & Xu, S.J. (2007) Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: a molecular dynamics study. Clays and Clay Minerals, 55, 554564.CrossRefGoogle Scholar
Minisini, B. & Tsobnang, F. (2005) Molecular mechanics studies of specific interactions in organomodified clay nanocomposite. Composites: Part A, 36, 531537.CrossRefGoogle Scholar
Nigam, V., Setua, D.K, Mathur, G.N. & Kar, K.K. (2004) Epoxy-montmorillonite clay nanocomposites: synthesis and characterization. Journal of Applied Polymer Science, 93, 22012210.CrossRefGoogle Scholar
Park, Y., Ayoko, G.A. & Frost, R.L. (2011) Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. Journal of Colloid and Interface Science, 354, 292305.CrossRefGoogle ScholarPubMed
Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S. et al. (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91, 141.CrossRefGoogle Scholar
Peng, C.L., Zhong, Y.H. & Min, F.F. (2018) Adsorption of alkylamine cations on montmorillonite (001) surface: a density functional theory study. Applied Clay Science, 152, 249258.CrossRefGoogle Scholar
Plimpton, S.J. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 119.CrossRefGoogle Scholar
Sato, T., Watanabe, T. & Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103113.CrossRefGoogle Scholar
Scholtzová, E. (2020) Computational modeling of nanoclays. Pp. 139166 in: Micro and Nano Technologies Series, Clay Nanoparticles. Properties and Applications (Cavallaro, G., Fakhrullin, R. & Pasbakhsh, P., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Scholtzová, E., Madejová, J., Jankovič, L. & Tunega, D. (2016) Structural and spectroscopic characterization of montmorillonite intercalated with n-butylammonium cations (n = 1–4) – modeling and experimental study. Clays and Clay Minerals, 64, 401412.CrossRefGoogle Scholar
Shah, K.J., Pan, S.Y., Shukla, A.D., Shah, D.O. & Chiang, P.C. (2018) Mechanism of organic pollutants sorption from aqueous solution by cationic tunable organoclays. Journal of Colloid and Interface Science, 529, 9099.CrossRefGoogle ScholarPubMed
Silva, I.A., Sousa, F.K.A., Menezes, R.R., Neves, G.A., Santana, L.N.L. & Ferreira, H.C. (2014) Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Applied Clay Science, 95, 371377.CrossRefGoogle Scholar
Sun, H. (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. Journal of Physical Chemistry B, 102, 73387364.CrossRefGoogle Scholar
Sun, H., Mumby, S.J., Maple, J.R. & Hagler, A.T. (1994) An ab Initio CFF93 all-atom force field for polycarbonates. Journal of the American Chemical Society, 116, 29782987.CrossRefGoogle Scholar
Tahani, A., Karroua, M., Van Damme, H., Levitz, P. & Bergaya, F. (1999) Adsorption of a cationic surfactant on Na-montmorillonite: inspection of adsorption layer by X-ray and fluorescence spectroscopies. Journal of Colloid and Interface Science, 216, 242249.CrossRefGoogle ScholarPubMed
Teich-McGoldrick, S.L., Greathouse, J.A., Jové-Colón, C.F. & Cygan, R.T. (2015) Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. Journal of Physical Chemistry C, 119, 2088020891.CrossRefGoogle Scholar
Van de Voorde, A., Lorgeoux, C., Gromaire, M. & Chebbo, G. (2012) Analysis of quaternary ammonium compounds in urban stormwater samples. Environmental Pollution, 164, 150157.CrossRefGoogle ScholarPubMed
Veiskarami, M., Sarvi, M.N. & Mokhtari, A.R. (2016) Influence of the purity of montmorillonite on its surface modification with an alkyl-ammonium salt. Applied Clay Science, 120, 111120.CrossRefGoogle Scholar
Witthuhn, B., Klauth, P., Pernyeszi, T., Vereecken, H. & Klumpp, E. (2006) Organoclays for aquifer bioremediation: adsorption of chlorobenzene on organoclays and its degradation by RHODOCOCCUS B528. Water, Air & Soil Pollution: Focus, 6, 317329.CrossRefGoogle Scholar
Yang, S., Liang, G., Gu, A. & Mao, H. (2012) Facile synthesis and catalytic performance of Fe-containing silica-pillared clay derivatives with ordered interlayer mesoporous structure. Industrial & Engineering Chemistry Research, 51, 1559315600.CrossRefGoogle Scholar
Yang, S., Liang, G., Gu, A. & Mao, H. (2013) Synthesis of mesoporous iron-incorporated silica-pillared clay and catalytic performance for phenol hydroxylation. Applied Surface Science, 285B, 721726.CrossRefGoogle Scholar
Yariv, S. & Cross, H. (2002) Organo-Clay Complexes and Interactions. CRC Press, Boca Raton, FL, USA, 680 pp.Google Scholar
Yue, X., Zhang, R., Li, H., Su, M., Jin, X. & Qin, D. (2019) Loading and sustained release of benzyl ammonium chloride (BAC) in nano-clays. Materials, 12, 3780.CrossRefGoogle ScholarPubMed
Zanini, G.P., Ovesenr, R.G., Hansen, H.C.B. & Strobel, B.W. (2013) Adsorption of the disinfectant benzalkonium chloride on montmorillonite. Synergistic effect in mixture of molecules with different chain lengths. Journal of Environmental Management, 128, 100105.CrossRefGoogle ScholarPubMed
Zeng, J., Li, Y., Jin, G., Su, J.Q. & Yao, H. (2022) Short-term benzalkonium chloride (C12) exposure induced the occurrence of wide-spectrum antibiotic resistance in agricultural soils. Environmental Science & Technology, 56, 1505415063.CrossRefGoogle ScholarPubMed
Zhou, Q., Shen, W., Zhu, J., Zhu, R., He, H., Zhou, J. & Yuan, P. (2014) Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 97–98, 6276.CrossRefGoogle Scholar
Zhu, J.X., Zhu, L.Z., Zhu, R.L. & Chen, B.L. (2008) Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds. Clays and Clay Minerals, 56, 144154.CrossRefGoogle Scholar
Supplementary material: File

Su et al. supplementary material

Su et al. supplementary material
Download Su et al. supplementary material(File)
File 273 KB