Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-24T04:03:15.091Z Has data issue: false hasContentIssue false

Ultrastructural study: in vitro and in vivo differentiation of mice spermatogonial stem cells

Published online by Cambridge University Press:  27 December 2023

Zahra Bashiri
Affiliation:
Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran Omid Fertility & Infertility Clinic, Hamedan, Iran
Mansoureh Movahedin
Affiliation:
Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Vahid Pirhajati
Affiliation:
Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
Hamidreza Asgari
Affiliation:
Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Morteza Koruji*
Affiliation:
Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
*
Corresponding author: Morteza Koruji; Email: koruji.m@iums.ac.ir

Summary

Mouse testicular tissue is composed of seminiferous tubules and interstitial tissue. Mammalian spermatogenesis is divided into three stages: spermatocytogenesis (mitotic divisions) in which spermatogonial stem cells (SSCs) turn into spermatocytes, followed by two consecutive meiotic divisions in which spermatocytes form spermatids. Spermatids differentiate into spermatozoa during spermiogenesis. Various factors affect the process of spermatogenesis and the organization of cells in the testis. Any disorder in different stages of spermatogenesis will have negative effects on male fertility. The aim of the current study was to compare the in vitro and in vivo spermatogenesis processes before and after transplantation to azoospermic mice using ultrastructural techniques. In this study, mice were irradiated with single doses of 14 Gy 60Co radiation. SSCs isolated from neonatal mice were cultured in vitro for 1 week and were injected into the seminiferous tubule recipient’s mice. Testicular cells of neonatal mice were cultured in the four groups on extracellular matrix-based 3D printing scaffolds. The transplanted testes (8 weeks after transplantation) and cultured testicular cells in vitro (after 3 weeks) were then processed for transmission electron microscopy studies. Our study’s findings revealed that the morphology and ultrastructure of testicular cells after transplantation and in vitro culture are similar to those of in vivo spermatogenesis, indicating that spermatogenic cell nature is unaltered in vitro.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, M. J., Fernandes, A. P., Báo, S. N. and Recco-Pimentel, S. M. (1999). An ultrastructural study of spermiogenesis in three species of Physalaemus (Anura, Leptodactylidae). Biocell, 23(3), 211221.Google ScholarPubMed
Avarbock, M. R., Brinster, C. J. and Brinster, R. L. (1996). Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nature Medicine, 2(6), 693696. doi: 10.1038/nm0696-693 CrossRefGoogle ScholarPubMed
Bashiri, Z., Amiri, I., Gholipourmalekabadi, M., Falak, R., Asgari, H., Maki, C. B., Moghaddaszadeh, A. and Koruji, M. (2021). Artificial testis: Testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomaterials Science, 9(9), 34653484. doi: 10.1039/d0bm02209h CrossRefGoogle Scholar
Bashiri, Z., Gholipourmalekabadi, M., Falak, R., Amiri, I., Asgari, H., Chauhan, N. P. S. and Koruji, M. (2022). In vitro production of mouse morphological sperm in artificial testis bioengineered by 3D printing of extracellular matrix. International Journal of Biological Macromolecules, 217, 824841. doi: 10.1016/j.ijbiomac.2022.07.127 CrossRefGoogle ScholarPubMed
Bellvé, A. R., Cavicchia, J. C., Millette, C. F., O’Brien, D. A., Bhatnagar, Y. M. and Dym, M. (1977). Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization. Journal of Cell Biology, 74(1), 6885. doi: 10.1083/jcb.74.1.68 CrossRefGoogle ScholarPubMed
Brinster, R. L. (2002). Germline stem cell transplantation and transgenesis. Science, 296(5576), 21742176. doi: 10.1126/science.1071607 CrossRefGoogle ScholarPubMed
Brinster, R. L. and Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 1130311307. doi: 10.1073/pnas.91.24.11303 CrossRefGoogle ScholarPubMed
Brinster, R. L. and Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 1129811302. doi: 10.1073/pnas.91.24.11298 CrossRefGoogle ScholarPubMed
Cham, T. C., Ibtisham, F. I., Fayaz, M. A. and Honaramooz, A. (2021). Generation of a highly biomimetic organoid, including vasculature, resembling the native immature testis tissue. Cells, 10(7), 1696. doi: 10.3390/cells10071696 CrossRefGoogle ScholarPubMed
Chen, S.-R. and Liu, Y.-X. (2015). Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction, 149(4), R159R167. doi: 10.1530/REP-14-0481 CrossRefGoogle ScholarPubMed
Cheng, C. Y. and Mruk, D. D. (2009). An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: A biochemical and molecular perspective. Critical Reviews in Biochemistry and Molecular Biology, 44(5), 245263. doi: 10.1080/10409230903061207 CrossRefGoogle ScholarPubMed
Chiarini-Garcia, H. and Russell, L. D. (2002). Characterization of mouse spermatogonia by transmission electron microscopy. Reproduction, 123(4), 567577. doi: 10.1530/rep.0.1230567 CrossRefGoogle ScholarPubMed
Chocu, S., Calvel, P., Rolland, A. D. and Pineau, C. (2012). Spermatogenesis in mammals: Proteomic insights. Systems Biology in Reproductive Medicine, 58(4), 179190. doi: 10.3109/19396368.2012.691943 CrossRefGoogle ScholarPubMed
Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52(1), 198236. doi: 10.1152/physrev.1972.52.1.198 CrossRefGoogle ScholarPubMed
Creemers, L. B., Meng, X., Den Ouden, K., Van Pelt, A. M. M., Izadyar, F., Santoro, M., Sariola, H. and De Rooij, D. G. (2002). Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biology of Reproduction, 66(6), 15791584. doi: 10.1095/biolreprod66.6.1579 CrossRefGoogle ScholarPubMed
Dym, M. and Clermont, Y. (1970). Role of spermatogonia in the repair of the seminiferous epithelium following X-irradiation of the rat testis. American Journal of Anatomy, 128(3), 265282. doi: 10.1002/aja.1001280302 CrossRefGoogle ScholarPubMed
Eslahi, N., Hadjighassem, M. R., Joghataei, M. T., Mirzapour, T., Bakhtiyari, M., Shakeri, M., Pirhajati, V., Shirinbayan, P. and Koruji, M. (2013). The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. International Journal of Nanomedicine, 8, 45634576. doi: 10.2147/IJN.S45535 Google ScholarPubMed
Fawcett, D. W. (1975). The mammalian spermatozoon. Developmental Biology, 44(2), 394436. doi: 10.1016/0012-1606(75)90411-x CrossRefGoogle ScholarPubMed
Fu, R. H., Wang, Y.-C. W., Liu, S.-P., Shih, T.-R., Lin, H.-L., Chen, Y.-M., Sung, J.-H., Lu, C.-H., Wei, J. R., Wang, Z.-W., Huang, S. J., Tsai, C. H., Shyu, W. C. and Lin, S. Z. (2014). Decellularization and recellularization technologies in tissue engineering. Cell Transplantation, 23(4–5), 621630. doi: 10.3727/096368914X678382 CrossRefGoogle ScholarPubMed
Gerton, G. L. and Millette, C. F. (1984). Generation of flagella by cultured mouse spermatids. Journal of Cell Biology, 98(2), 619628. doi: 10.1083/jcb.98.2.619 CrossRefGoogle ScholarPubMed
Griswold, M. D. (1998). The central role of Sertoli cells in spermatogenesis. Seminars in Cell and Developmental Biology, 9(4), 411416. doi: 10.1006/scdb.1998.0203 CrossRefGoogle ScholarPubMed
Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., Shemin, R., Beygui, R. E. and MacLellan, W. R. (2008). Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials, 29(19), 29072914. doi: 10.1016/j.biomaterials.2008.03.034 CrossRefGoogle ScholarPubMed
Huleihel, M., Nourashrafeddin, S. and Plant, T. M. (2015). Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian Journal of Andrology, 17(6), 972980. doi: 10.4103/1008-682X.154994 CrossRefGoogle ScholarPubMed
Ibtisham, F., Wu, J., Xiao, M., An, L., Banker, Z., Nawab, A., Zhao, Y. and Li, G. (2017). Progress and future prospect of in vitro spermatogenesis. Oncotarget, 8(39), 6670966727. doi: 10.18632/oncotarget.19640 CrossRefGoogle ScholarPubMed
Izadyar, F., Creemers, L. B., van Dissel-Emiliani, F. M., van Pelt, A. M. and de Rooij, D. G. (2000). Spermatogonial stem cell transplantation. Molecular and Cellular Endocrinology, 169(1–2), 2126. doi: 10.1016/s0303-7207(00)00346-4 CrossRefGoogle ScholarPubMed
Jahnukainen, K. and Stukenborg, J.-B. (2012). Clinical review: Present and future prospects of male fertility preservation for children and adolescents. Journal of Clinical Endocrinology and Metabolism, 97(12), 43414351. doi: 10.1210/jc.2012-3065 CrossRefGoogle ScholarPubMed
Jégou, B. (1993). The Sertoli-germ cell communication network in mammals. International Review of Cytology, 147, 2596. doi: 10.1016/S0074-7696(08)60766-4 CrossRefGoogle ScholarPubMed
Kanatsu-Shinohara, M., Ogonuki, N., Iwano, T., Lee, J., Kazuki, Y., Inoue, K., Miki, H., Takehashi, M., Toyokuni, S., Shinkai, Y., Oshimura, M., Ishino, F., Ogura, A. and Shinohara, T. (2005). Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development, 132(18), 41554163. doi: 10.1242/dev.02004 CrossRefGoogle ScholarPubMed
Kang, X., Ge, S., Guo, M., Liu, G. and Mu, S. (2008). A transmission electron microscopy investigation: The membrane complex in spermatogenesis of Fenneropenaeus chinensis . Cytotechnology, 56(2), 113121. doi: 10.1007/s10616-008-9132-5 CrossRefGoogle ScholarPubMed
Kangasniemi, M., Veromaa, T., Kulmala, J., Kaipia, A., Parvinen, M. and Toppari, J. (1990). DNA-flow cytometry of defined stages of rat seminiferous epithelium: Effects of 3 Gy of high-energy X-irradiation. Journal of Andrology, 11(3), 312317. doi: 10.1002/j.1939-4640.1990.tb03246.x CrossRefGoogle ScholarPubMed
Kashiwabara, S., Kashimoto, N., Sanoh, S., Uesaka, T., Katoh, O. and Watanabe, H. (2003). Damage of the mouse testis by tritiated water and 137Cs-gamma-rays. Hiroshima Journal of Medical Sciences, 52(3), 5358.Google ScholarPubMed
Keane, T. J., Swinehart, I. T. and Badylak, S. F. (2015). Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods, 84, 2534. doi: 10.1016/j.ymeth.2015.03.005 CrossRefGoogle ScholarPubMed
Kerr, J. B., Savage, G. N., Millar, M. and Sharpe, R. M. (1993). Response of the seminiferous epithelium of the rat testis to withdrawal of androgen: Evidence for direct effect upon intercellular spaces associated with Sertoli cell junctional complexes. Cell and Tissue Research, 274(1), 153161. doi: 10.1007/BF00327996 CrossRefGoogle ScholarPubMed
Kim, Y., Selvaraj, V., Dobrinski, I., Lee, H., McEntee, M. C. and Travis, A. J. (2006). Recipient preparation and mixed germ cell isolation for spermatogonial stem cell transplantation in domestic cats. Journal of Andrology, 27(2), 248256. doi: 10.2164/jandrol.05034 CrossRefGoogle ScholarPubMed
Koruji, M., Movahedin, M., Mowla, S. J., Gourabi, H. and Arfaee, A. J. (2008). The morphological changes of adult mouse testes after 60Co gamma-radiation. Iranian Biomedical Journal, 12(1), 3542.Google Scholar
Koruji, M., Movahedin, M., Mowla, S. J., Gourabi, H. and Arfaee, A. J. (2009). Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cellular and Developmental Biology. Animal, 45(5–6), 281289. doi: 10.1007/s11626-008-9169-y CrossRefGoogle ScholarPubMed
Lan, W., Nanshan, D. and Wei, L. (1999). Studies on spermiogenesis of a freshwater crab Sinopotamon yangtsekiense (Crustacea Decapoda). Shui Sheng Wu Hsueh Bao = Acta Hydrobiologica Sinica, 23, 2933.Google Scholar
Medina, A., García-Isarch, E., Sobrino, I. and Abascal, F. J. (2006). Ultrastructure of the spermatozoa of Aristaeopsis edwardsiana and Aristeus varidens (Crustacea, Dendrobranchiata, Aristeidae). Zoomorphology, 125(1), 3946. doi: 10.1007/s00435-005-0013-6 CrossRefGoogle Scholar
Mirzapour, T., Tengku Ibrahim, T. A. B., Movahedin, M. and Nowroozi, M. R. (2017). Morphological and ultrastructural studies of human spermatogonial stem cells from patients with maturation arrest. Andrologia, 49(7), e12700. doi: 10.1111/and.12700 CrossRefGoogle ScholarPubMed
Mohaqiq, M., Movahedin, M., Mazaheri, Z. and Amirjannati, N. (2019). In vitro transplantation of spermatogonial stem cells isolated from human frozen–thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biological Research, 52(1), 16. doi: 10.1186/s40659-019-0223-x CrossRefGoogle ScholarPubMed
Parreira, G. G., Ogawa, T., Avarbock, M. R., França, L. R., Brinster, R. L. and Russell, L. D. (1998). Development of germ cell transplants in mice. Biology of Reproduction, 59(6), 13601370. doi: 10.1095/biolreprod59.6.1360 CrossRefGoogle ScholarPubMed
Ramm, S. A., Schärer, L., Ehmcke, J. and Wistuba, J. (2014). Sperm competition and the evolution of spermatogenesis. Molecular Human Reproduction, 20(12), 11691179. doi: 10.1093/molehr/gau070 CrossRefGoogle ScholarPubMed
Rodriguez-Sosa, J. R. and Dobrinski, I. (2009). Recent developments in testis tissue xenografting. Reproduction, 138(2), 187194. doi: 10.1530/REP-09-0012 CrossRefGoogle ScholarPubMed
Russell, L. D., Ettlin, R. A., Sinha Hikim, A. P. and Clegg, E. D. (1993). Histological and histopathological evaluation of the testis. In Wiley Online Library.CrossRefGoogle Scholar
Schlatt, S., Kim, S. S. and Gosden, R. (2002). Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction, 124(3), 339346. doi: 10.1530/rep.0.1240339 CrossRefGoogle ScholarPubMed
Shokri, S., Hemadi, M. and Aitken, R. J. (2012). Transmission electron microscopy for the quantitative analysis of testis ultra structure. INTECH Open Access Publisher.CrossRefGoogle Scholar
Somosy, Z. (2000). Radiation response of cell organelles. Micron, 31(2), 165181. doi: 10.1016/s0968-4328(99)00083-9 CrossRefGoogle ScholarPubMed
Sprando, R. L. (1990). Perfusion of the rat testis through the heart using heparin. In Russell, L. D., Ettlin, R. A., Sinha Hikim, A. P. and Clegg, E. D. (eds.), Histological and Histopathological Evaluation of the Testis. Cache River Press.Google Scholar
Stukenborg, J. B., Wistuba, J. W., Luetjens, C. M., Elhija, M. A., Huleihel, M., Lunenfeld, E., Gromoll, J., Nieschlag, E. and Schlatt, S. (2008). Coculture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. Journal of Andrology, 29(3), 312329. doi: 10.2164/jandrol.107.002857 CrossRefGoogle Scholar
Thakur, M., Gupta, H., Singh, D., Mohanty, I. R., Maheswari, U., Vanage, G. and Joshi, D. S. (2014). Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. Journal of Nanobiotechnology, 12, 113.CrossRefGoogle ScholarPubMed
Tudge, C. C., Scheltinga, D. M. and Jamieson, B. G. M. (2001). Spermatozoal morphology in the “symmetrical” hermit crab. Pylocheles (Bathycheles) SP.(Crustacea, Decapoda, Anomura, Paguroidea, Pylochelidae)’, Zoosystema, 23, 117130.Google Scholar
van der Horst, G., Kotzé, S. H., O’Riain, M. J. and Maree, L. (2019). Testicular structure and spermatogenesis in the naked mole-rat is unique (degenerate) and atypical compared to other mammals. Frontiers in Cell and Developmental Biology, 7, 234. doi: 10.3389/fcell.2019.00234 CrossRefGoogle ScholarPubMed
Van Pelt, A. M. M., Morena, A. R., van Dissel-Emiliani, F. M. F., Boitani, C., Gaemers, I. C., De Rooij, D. G. and Stefanini, M. (1996). Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biology of Reproduction, 55(2), 439444. doi: 10.1095/biolreprod55.2.439 CrossRefGoogle ScholarPubMed
Villagra, L. I., Ramos, I., Cisint, S., Crespo, C. A. and Fernández, S. N. (2018). Electron microscopy observations on testis and spermatozoa of Leptodactylus chaquensis (Anura, Leptodactylidae). Micron, 105, 3546. doi: 10.1016/j.micron.2017.11.007 CrossRefGoogle Scholar
Watson, M. L. (1952). Spermatogenesis in the albino rat as revealed by electron microscopy; a preliminary report. Biochimica et Biophysica Acta, 8(4), 369374. doi: 10.1016/0006-3002(52)90060-7 CrossRefGoogle ScholarPubMed
Xianjiang, K. and Suo, W. (2000). Studies on the changes of morphology and structure of the spermatozoon in Penaeus chinensis . Donghai Marine Science, 18, 4046.Google Scholar