Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T15:55:55.609Z Has data issue: false hasContentIssue false

Effect of different activation modes on DNA integrity of porcine M II oocytes matured in vitro

Published online by Cambridge University Press:  12 June 2009

Bozena Novotná*
Affiliation:
Department of Genetic Ecotoxicology, Institute of Experimental Medicine, v.v.i, ASCR, Prague, Czech Republic.
Jaroslav Petr
Affiliation:
Reproduction Biology Laboratory, Research Institute of Animal Production, v.v.i., Prague, Czech Republic.
Marketa Sedmíková
Affiliation:
Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences in Prague, Prague 6, Czech Republic.
Jana Kratochvilová
Affiliation:
Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences in Prague, Prague 6, Czech Republic.
Frantisek Jílek
Affiliation:
Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences in Prague, Prague 6, Czech Republic.
*
All correspondence to: Bozena Novotná. Department of Genetic Ecotoxicology, Institute of Experimental Medicine, v.v.i, ASCR, Prague, Czech Republic. Tel: +420 24106 2209. Fax: +420 24106 2785. e-mail: novotna@biomed.cas.cz

Summary

The effect of different activation protocols on DNA integrity of porcine oocytes matured in vitro was analysed using the comet assay. The oocytes from ovaries of slaughtered gilts were cultured for 48 h in modified M199 medium. They were then freed of cumulus cells and treated continuously or intermittently with a nitric oxide (NO) donor for 6 h. Standard activation with calcium ions (Ca2+) and culture without any treatment served as positive and negative controls, respectively. The activation was assessed according to the formation of pronuclei. Exposure of oocytes to Ca2+ was associated with high activation efficiency, but decreased DNA integrity. The opposite, i.e. low activation efficiency but high DNA integrity was observed after continuous exposure to NO. Intermittent action of NO increased the activation rate, while the values of DNA damage remained at low levels. Our data suggest that an increased DNA instability could be the main reason compromising the further embryonic development of oocytes activated by the standard protocol. The intermittent treatment with NO thus represents a promising step to optimization of parthenogenetic activation of pig oocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biswas, S., Kabir, S.N. & Pal, A.K. (1998). The role of nitric oxide in the process of implantation in rats. J. Reprod. Fertil. 114, 157–61.CrossRefGoogle ScholarPubMed
Bos-Mikich, A., Swann, K. & Whittingham, D.G. (1995). Calcium oscillations and protein synthesis inhibition synergistically activate mouse oocytes, Mol. Reprod. Dev. 41, 8490.CrossRefGoogle ScholarPubMed
Collins, A.R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26, 249261.CrossRefGoogle ScholarPubMed
Dyachok, O., Isakov, Y., Sagetorp, J. & Tengholm, A. (2006). Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439, 349–52.CrossRefGoogle ScholarPubMed
Fujie, S., Yamamoto, T., Murakami, J., Hatakeyama, D., Shiga, H., Suzuki, N. & Ito, E. (2005). Nitric oxide synthase and soluble guanylyl cyclase underlying the modulation of electrical oscillations in a central olfactory organ. J. Neurobiol. 62, 1430.CrossRefGoogle Scholar
Goud, A.P., Goud, P.T., Diamond, M.P. & Abu-Soud, H.M. (2005). Nitric oxide delays oocyte aging. Biochemistry 44, 11361–8.CrossRefGoogle ScholarPubMed
Huo, L.J., Liang, C.G., Yu, L.Z., Zhong, Z.S., Yang, Z.M., Fan, H.Y., Chen, D.Y. & Sun, O.Y. (2005). Inducible nitric oxide synthase-derived nitric oxide regulates germinal vesicle breakdown and first polar body emission in the mouse oocyte. Reproduction 129, 403–9.CrossRefGoogle ScholarPubMed
Jílek, F., Hüttelova, R., Petr, J., Holubova, M. & Rozinek, J. (2001). Activation of pig oocytes using calcium ionophore: effect of the protein kinase inhibitor 6-dimethyl aminopurine. Reprod. Domest. Anim. 36, 139–45.Google ScholarPubMed
Jones, K.T. (2005). Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction 130, 813–23.CrossRefGoogle ScholarPubMed
Kline, D. & Kline, J.T. (1992). Repetitive calcium transients and the role of calcium in exocytosis and cell-cycle activation in the mouse egg. Dev. Biol. 149, 80–9.CrossRefGoogle ScholarPubMed
Kumaravel, T.S., Vilhar, B., Faux, S.P. & Jha, A.N. (2009). Comet assay measurements: a perspective. Cell. Biol. Toxicol. 25, 5364.CrossRefGoogle ScholarPubMed
Kuo, R.C., Baxter, G.T., Thompson, S.H., Stricker, S.A., Patton, C., Bonaventura, J. & Epel, D. (2000). NO is necessary and sufficient for egg activation at fertilization. Nature 406, 633–6.CrossRefGoogle ScholarPubMed
Kwon, N.S., Nathan, C.F., Gilker, C., Griffith, O.W., Matthews, D.E. & Stuehr, D.J. (1990). l-Citrulline production from l-arginine by macrophage nitric oxide synthase. J. Biol. Chem. 265, 13442–5.CrossRefGoogle ScholarPubMed
Lamas, S., Marsden, P.A., Li, G.K., Tempst, P. & Michel, T. (1992). Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc. Natl. Acad. Sci. USA 89, 6348–52.CrossRefGoogle ScholarPubMed
Lewis, S.E. & Agbaje, I.M. (2008). Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 23, 163–70.CrossRefGoogle ScholarPubMed
Long, A. & Michod, R.E. (1995). Origin of sex for error repair. I. Sex, diploidy, and haploidy. Theor. Popul. Biol. 47, 1855.CrossRefGoogle ScholarPubMed
Marchesi, D.E., Feng, H.L. & Hershlag, A. (2007). Current assessment of sperm DNA integrity. Arch. Androl. 53, 239–47.CrossRefGoogle ScholarPubMed
Mattioli, M., Barboni, B., Gioia, L. & Lio, P. (2003). Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes. Mol. Reprod. Dev. 65, 289–97.CrossRefGoogle ScholarPubMed
McKelvey-Martin, V.J., Green, M.H., Schmezer, P., Pool-Zobel, B.L., De Meo, M.P. & Collins, A. (1993). The single cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. 288, 4763.CrossRefGoogle ScholarPubMed
Men, H., Monson, R.L., Parrish, J.J. & Rutledge, J.J. (2003a). Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation. Mol. Reprod. Dev. 64, 245–50.CrossRefGoogle ScholarPubMed
Men, H., Monson, R.L., Parrish, J.J. & Rutledge, J.J. (2003b). Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 47, 7381.CrossRefGoogle ScholarPubMed
Petr, J., Rajmon, R., Rozinek, J., Sedmíková, M., Jeseta, M., Chmelíková, E., Svestková, D. & Jílek, F. (2005a). Activation of pig oocytes using nitric oxide donors. Mol. Reprod. Dev. 71, 115–22.CrossRefGoogle ScholarPubMed
Petr, J., Rajmon, R., Lánská, V., Sedmíková, M. & Jílek, F. (2005b). Nitric oxide-dependent activation of pig oocytes: role of calcium. Mol. Cell. Endocrinol. 242, 1622.CrossRefGoogle ScholarPubMed
Petr, J., Chmelíková, E., Krejčová, T., Rehak, D., Novotná, B. & Jílek, F. (2008). Parthenogenetic activation of pig oocytes using pulsatile treatment with a nitric oxide donor. Reprod. Domest. Anim. [Epub] DOI 10.1111/j.1439–0531.2008.01275.x.Google Scholar
Rottingen, J.A. & Iversen, J.G. (2000). Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol. Scand. 169, 203–19.CrossRefGoogle ScholarPubMed
Sedmíková, M., Burdova, J., Petr, J., Etrych, M., Rozinek, J. & Jílek, F. (2003). Induction and activation of meiosis and subsequent parthenogenetic development of growing pig oocytes using calcium ionophore A23187. Theriogenology 60, 1609–20.CrossRefGoogle ScholarPubMed
Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–91.CrossRefGoogle ScholarPubMed
Steinhardt, R.A., Epel, D., Carroll, E.J. & Yanagima, R. (1974). Is calcium ionophore a universal activator for unfertilized eggs? Nature 252, 41–2.CrossRefGoogle Scholar
Swann, K., & Ozil, J.P. (1994). Dynamics of the calcium signal that triggers mammalian egg activation. Int. Rev. Cytol. 152, 183222.CrossRefGoogle ScholarPubMed
Tatemoto, H., Sakurai, N., & Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–10.CrossRefGoogle ScholarPubMed
Vrzoc, M. & Petras, M. (1996). Comparison of three power supplies used for the single-cell gel assay. Environ. Mol. Mutagen. 28, 154–7.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Wu, H., He, C.L. & Fissore, R.A. (1997). Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs. Mol. Reprod. Dev. 46, 176–89.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Yanagimachi, R. (1988). Mammalian fertilization. In The Physiology of Reproduction (eds Knobil, E. & Neil, J.), pp. 135–85. New York: Raven Press.Google Scholar
Yuan, Y., Hao, Z.D., Liu, J., Wu, Y., Yang, L., Liu, G.S., Tian, J.H., Zhu, S.E. & Zeng, S.M. (2008). Heat shock at the germinal vesicle breakdown stage induces apoptosis in surrounding cumulus cells and reduces maturation rates of porcine oocytes in vitro. Theriogenology 70, 168–78.CrossRefGoogle ScholarPubMed