Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T12:32:30.161Z Has data issue: false hasContentIssue false

The effect of Coenzyme Q10 on mitochondrial biogenesis in mouse ovarian follicles during in vitro culture

Published online by Cambridge University Press:  04 December 2023

Roya Harsini
Affiliation:
School of Biology, Damghan University, Damghan, Iran
Saeed Zavareh*
Affiliation:
School of Biology, Damghan University, Damghan, Iran Institute of Biological Sciences, Damghan University, Damghan, Iran
Meysam Nasiri
Affiliation:
School of Biology, Damghan University, Damghan, Iran Institute of Biological Sciences, Damghan University, Damghan, Iran
Sara Seyfi
Affiliation:
School of Biology, Damghan University, Damghan, Iran
*
Corresponding author: Saeed Zavareh; Email: zavareh.s@du.ac.ir

Summary

The aim of this research was to investigate the effect of Coenzyme Q10 (CoQ10) on the expression of the Transcription Factor A Mitochondrial (Tfam) gene and mtDNA copy number in preantral follicles (PFs) of mice during in vitro culture. To conduct this experimental study, PFs were isolated from 14-day-old National Medical Research Institute mice and cultured in the presence of 50 µm CoQ10 for 12 days. On the 12th day, human chorionic gonadotropin was added to stimulate ovulation. The fundamental parameters, including preantral follicle developmental rate and oocyte maturation, were evaluated. Additionally, the Tfam gene expression and mtDNA copy number of granulosa cells and oocytes were assessed using the real-time polymerase chain reaction. The results revealed that CoQ10 significantly increased the diameter of PFs, survival rate, antrum formation, and metaphase II (MII) oocytes (P < 0.05). Moreover, in the CoQ10-treated groups, the Tfam gene expression in granulosa cells and oocytes increased considerably compared with the control group. The mtDNA copy number of granulosa cells and oocytes cultured in the presence of CoQ10 was substantially higher compared with the control groups (P < 0.05). The addition of CoQ10 to the culture medium enhances the developmental competence of PFs during in vitro culture by upregulating Tfam gene expression and increasing mtDNA copy number in oocyte and granulosa cells.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoushahi, M., Salehnia, M. and Ghorbanmehr, N. (2018). The mitochondrial DNA copy number, cytochrome c oxidase activity and reactive oxygen species level in metaphase II oocytes obtained from in vitro culture of cryopreserved ovarian tissue in comparison with in vivo-obtained oocyte. Journal of Obstetrics and Gynaecology Research, 44(10), 19371946. doi: 10.1111/jog.13747 CrossRefGoogle ScholarPubMed
Amoushahi, M., Salehnia, M. and Mowla, S. J. (2017). Vitrification of mouse MII oocyte decreases the mitochondrial DNA copy number, TFAM gene expression and mitochondrial enzyme activity. Journal of Reproduction and Infertility, 18(4), 343351.Google ScholarPubMed
Arenas-Jal, M., Suñé-Negre, J. M. and García-Montoya, E. (2020). Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Comprehensive Reviews in Food Science and Food Safety, 19(2), 574594. doi: 10.1111/1541-4337.12539 CrossRefGoogle ScholarPubMed
Busnelli, A., Navarra, A. and Levi-Setti, P. E. (2021). Qualitative and quantitative ovarian and peripheral blood mitochondrial DNA (mtDNA) alterations: Mechanisms and implications for female fertility. Antioxidants, 10(1), 55. doi: 10.3390/antiox10010055 CrossRefGoogle ScholarPubMed
Cecchino, G. N. and Garcia-Velasco, J. A. (2019). Mitochondrial DNA copy number as a predictor of embryo viability. Fertility and Sterility, 111(2), 205211. doi: 10.1016/j.fertnstert.2018.11.021 CrossRefGoogle ScholarPubMed
Delkhosh, A., Shoorei, H., Niazi, V., Delashoub, M., Gharamaleki, M. N., Ahani-Nahayati, M., Dehaghi, Y. K., Raza, S., Taheri, M. H., Mohaqiq, M. and Abbasgholizadeh, F. (2021). Coenzyme Q10 ameliorates inflammation, oxidative stress, and testicular histopathology in rats exposed to heat stress. Human and Experimental Toxicology, 40(1), 315. doi: 10.1177/0960327120940366 CrossRefGoogle ScholarPubMed
Deng, X., Lin, N., Fu, J., Xu, L., Luo, H., Jin, Y., Liu, Y., Sun, L. and Su, J. (2020). The Nrf2/PGC1α pathway regulates antioxidant and proteasomal activity to alter cisplatin sensitivity in ovarian cancer. Oxidative Medicine and Cellular Longevity, 2020, 4830418. doi: 10.1155/2020/4830418 CrossRefGoogle ScholarPubMed
Filatov, M. A., Nikishin, D. A., Khramova, Y. V. and Semenova, M. L. (2020). The in vitro analysis of quality of ovarian follicle culture systems using time-lapse microscopy and quantitative real-time PCR. Journal of Reproduction and Infertility, 21(2), 94106.Google ScholarPubMed
Ghorbanmehr, N., Salehnia, M. and Amooshahi, M. (2018). The effects of sodium selenite on mitochondrial DNA copy number and reactive oxygen species levels of in vitro matured mouse oocytes. Cell Journal, 20(3), 396402. doi: 10.22074/cellj.2018.5430 Google ScholarPubMed
Heydarnejad, A., Ostadhosseini, S., Varnosfaderani, S. R., Jafarpour, F., Moghimi, A. and Nasr-Esfahani, M. H. (2019). Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Molecular Reproduction and Development, 86(7), 812824. doi: 10.1002/mrd.23159 CrossRefGoogle ScholarPubMed
Hosseinzadeh, E., Zavareh, S. and Lashkarboluki, T. (2015). Coenzyme Q10 improves developmental competence of mice Pre_antral follicle derived from vitrified ovary. Archives of Advances in Biosciences, 6, 6571.Google Scholar
Hosseinzadeh, E., Zavareh, S. and Lashkarbolouki, T. (2017). Antioxidant properties of coenzyme Q10-pretreated mouse pre-antral follicles derived from vitrified ovaries. Journal of Obstetrics and Gynaecology Research, 43(1), 140148. doi: 10.1111/jog.13173 CrossRefGoogle ScholarPubMed
Ito, J., Shirasuna, K., Kuwayama, T. and Iwata, H. (2020). Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology, 93, 3743. doi: 10.1016/j.cryobiol.2020.02.014 CrossRefGoogle ScholarPubMed
Kashka, R. H., Zavareh, S. and Lashkarboluki, T. (2015). The role of coenzyme Q10 on the total antioxidant capacity of mouse vitrified pre-antral follicles. Archives of Advances in Biosciences, 6, 19.Google Scholar
Kashka, R. H., Zavareh, S. and Lashkarbolouki, T. (2016). Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10. Systems Biology in Reproductive Medicine, 62(6), 404414. doi: 10.1080/19396368.2016.1235236 CrossRefGoogle Scholar
Khodakarami, A., Adibfar, S., Karpisheh, V., Abolhasani, S., Jalali, P., Mohammadi, H., Gholizadeh Navashenaq, J., Hojjat-Farsangi, M. and Jadidi-Niaragh, F. (2022). The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell International, 22(1), 241. doi: 10.1186/s12935-022-02660-5 CrossRefGoogle ScholarPubMed
Kung, H. C., Lin, K. J., Kung, C. T. and Lin, T. K. (2021). Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 9(8), 918. doi: 10.3390/biomedicines9080918 CrossRefGoogle ScholarPubMed
Lan, Y., Zhang, S., Gong, F., Lu, C., Lin, G. and Hu, L. (2020). The mitochondrial DNA copy number of cumulus granulosa cells may be related to the maturity of oocyte cytoplasm. Human Reproduction, 35(5), 11201129. doi: 10.1093/humrep/deaa085 CrossRefGoogle Scholar
Lee, C. H., Kang, M. K., Sohn, D. H., Kim, H. M., Yang, J. and Han, S. J. (2022). Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote, 30(2), 249257. doi: 10.1017/S0967199421000617 CrossRefGoogle ScholarPubMed
Lee, H. J., Park, M. J., Joo, B. S., Joo, J. K., Kim, Y. H., Yang, S. W., Kim, C. W. and Kim, K. H. (2021). Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure. Reproductive Biology and Endocrinology: RB&E, 19(1), 59. doi: 10.1186/s12958-021-00736-x CrossRefGoogle Scholar
Li, X., Zhan, J., Hou, Y., Chen, S., Hou, Y., Xiao, Z., Luo, D. and Lin, D. (2019). Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. American Journal of Translational Research, 11(10), 65446552.Google ScholarPubMed
Lu, J., Wang, Z., Cao, J., Chen, Y. and Dong, Y. (2018). A novel and compact review on the role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology: RB&E, 16(1), 80. doi: 10.1186/s12958-018-0391-5 CrossRefGoogle ScholarPubMed
Ma, L., Cai, L., Hu, M., Wang, J., Xie, J., Xing, Y., Shen, J., Cui, Y., Liu, X. J. and Liu, J. (2020). Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertility and Sterility, 114(2), 331337. doi: 10.1016/j.fertnstert.2020.04.002 CrossRefGoogle ScholarPubMed
Mao, J., Whitworth, K. M., Spate, L. D., Walters, E. M., Zhao, J. and Prather, R. S. (2012). Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology, 78(4), 887897. doi: 10.1016/j.theriogenology.2012.04.002 CrossRefGoogle ScholarPubMed
Maside, C., Martinez, C. A., Cambra, J. M., Lucas, X., Martinez, E. A., Gil, M. A., Rodriguez-Martinez, H., Parrilla, I. and Cuello, C. (2019). Supplementation with exogenous coenzyme Q10 to media for in vitro maturation and embryo culture fails to promote the developmental competence of porcine embryos. Reproduction in Domestic Animals, 54, Suppl. 4, 7277. doi: 10.1111/rda.13486 CrossRefGoogle ScholarPubMed
Misrani, A., Tabassum, S. and Yang, L. (2021). Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Frontiers in Aging Neuroscience, 13, 617588. doi: 10.3389/fnagi.2021.617588 CrossRefGoogle ScholarPubMed
Moshaashaee, T., Zavareh, S., Pourbeiranvand, S. and Salehnia, M. (2021). The effect of sodium selenite on expression of mitochondrial transcription factor A during in vitro maturation of mouse oocyte. Avicenna Journal of Medical Biotechnology, 13(2), 8186. doi: 10.18502/ajmb.v13i2.5526 Google ScholarPubMed
Otten, A. B. C., Kamps, R., Lindsey, P., Gerards, M., Pendeville-Samain, H., Muller, M., van Tienen, F. H. J. and Smeets, H. J. M. (2020). Tfam knockdown results in reduction of mtDNA copy number, OXPHOS deficiency and abnormalities in zebrafish embryos. Frontiers in Cell and Developmental Biology, 8, 381. doi: 10.3389/fcell.2020.00381 CrossRefGoogle ScholarPubMed
Özcan, P., Fıçıcıoğlu, C., Kizilkale, O., Yesiladali, M., Tok, O. E., Ozkan, F. and Esrefoglu, M. (2016). Can coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? Journal of Assisted Reproduction and Genetics, 33(9), 12231230. doi: 10.1007/s10815-016-0751-z CrossRefGoogle ScholarPubMed
Popov, L. D. (2020). Mitochondrial biogenesis: An update. Journal of Cellular and Molecular Medicine, 24(9), 48924899. doi: 10.1111/jcmm.15194 CrossRefGoogle ScholarPubMed
Rahimi Darehbagh, R., Khalafi, B., Allahveisi, A. and Habiby, M. (2022). Effects of the mitochondrial genome on germ cell fertility: A review of the literature. International Journal of Fertility and Sterility, 16(2), 7075. doi: 10.22074/IJFS.2021.527076.1098 Google ScholarPubMed
Rodríguez-Varela, C. and Labarta, E. (2021). Does coenzyme Q10 supplementation improve human oocyte quality? International Journal of Molecular Sciences, 22(17), 9541. doi: 10.3390/ijms22179541 CrossRefGoogle ScholarPubMed
Shimizu, S., Kasai, S., Yamazaki, H., Tatara, Y., Mimura, J., Engler, M. J., Tanji, K., Nikaido, Y., Inoue, T., Suganuma, H., Wakabayashi, K. and Itoh, K. (2022). Sulforaphane increase mitochondrial biogenesis-related gene expression in the hippocampus and suppresses age-related cognitive decline in mice. International Journal of Molecular Sciences, 23(15), 8433. doi: 10.3390/ijms23158433 CrossRefGoogle ScholarPubMed
Smolková, K., Mikó, E., Kovács, T., Leguina-Ruzzi, A., Sipos, A. and Bai, P. (2020). Nuclear factor erythroid 2-related Factor 2 in regulating cancer metabolism. Antioxidants and Redox Signaling, 33(13), 966997. doi: 10.1089/ars.2020.8024 CrossRefGoogle ScholarPubMed
Soto-Heras, S. and Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342350. doi: 10.1016/j.rvsc.2020.07.013 CrossRefGoogle ScholarPubMed
Streacker, C. and Whitaker, B. D. (2019). Coenzyme Q10 supplementation effects on in vitro maturation, fertilization, and early embryonic development in pigs. Ohio Journal of Science, 119(2), 28. doi: 10.18061/ojs.v119i2.6366 CrossRefGoogle Scholar
Talebi, A., Zavareh, S., Kashani, M. H., Lashgarbluki, T. and Karimi, I. (2012). The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. Journal of Assisted Reproduction and Genetics, 29(2), 175183. doi: 10.1007/s10815-011-9706-6 CrossRefGoogle ScholarPubMed
von Mengden, L., Klamt, F. and Smitz, J. (2020). Redox biology of human cumulus cells: Basic concepts, impact on oocyte quality, and potential clinical use. Antioxidants and Redox Signaling, 32(8), 522535. doi: 10.1089/ars.2019.7984 CrossRefGoogle ScholarPubMed
Xu, Y., Nisenblat, V., Lu, C., Li, R., Qiao, J., Zhen, X. and Wang, S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: A randomized controlled trial. Reproductive Biology and Endocrinology: RB&E, 16(1), 29. doi: 10.1186/s12958-018-0343-0 CrossRefGoogle ScholarPubMed
Yang, C. X., Liu, S., Miao, J. K., Mou, Q., Liu, X. M., Wang, P. C., Huo, L. J. and Du, Z. Q. (2021a). CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology, 159, 7786. doi: 10.1016/j.theriogenology.2020.10.009 CrossRefGoogle ScholarPubMed
Yang, S. C., Yu, E. J., Park, J. K., Kim, T. H., Eum, J. H., Paek, S. K., Hwang, J. Y., Lyu, S. W., Kim, J. Y., Lee, W. S., Yoon, T. K., Song, H. and Lee, H. J. (2021b). The ratio of mitochondrial DNA to genomic DNA copy number in cumulus cell may serve as a biomarker of embryo quality in IVF cycles. Reproductive Sciences, 28(9), 24952502. doi: 10.1007/s43032-021-00532-3 CrossRefGoogle ScholarPubMed