Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T05:49:30.664Z Has data issue: false hasContentIssue false

Development of cortical contractility in the Xenopus leavis oocyte mediated by reorganisation of the cortical cytoskeleton: a model

Published online by Cambridge University Press:  26 September 2008

Lyuba V. Ryabova
Affiliation:
Russian Academy of sciences, Russia and Arizona state university, Tempe, Arizona, USA
Sergei G. Vassetzky
Affiliation:
Russian Academy of sciences, Russia and Arizona state university, Tempe, Arizona, USA
David G. Capco*
Affiliation:
Russian Academy of sciences, Russia and Arizona state university, Tempe, Arizona, USA
*
Dr David G. Capco, Departement of Zoology, Arizona state University, Tempe, AZ 85287-1501, USA. Telephone: (602)965-7100. Fax: (602)965-2519

Summary

As the amphibian oocyte becomes the fertilisation-competent egg an actin-myosin assembles in the cortex which provides for the cortical contraction that accompanies the fertilisation. A number of recent investigations provide data for development of a model detailing the structural changes which should accompany the development of this contractile network as well as the signalling mechanisms which regular assembly and contraction.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bement, W.M. (1992). Singal transduction by calcium and protein kinnase C during egg activation. j.Exp.Zool. 263, 382–97.CrossRefGoogle Scholar
Bement, W.M. &Capco, D.G. (1989). Intracellular signals trigger ultrastructural events characteristic of meiotic maturation in oocytes of Xenopus laevis. Cell Tissue Res. 255, 183–91.CrossRefGoogle ScholarPubMed
Bement, W.M. & Capco, D.G. (1990). Transformation of the amphibian oocyte into the egg: structural and biochemical events. J. Electron microsc. Tech. 16, 202–34.CrossRefGoogle ScholarPubMed
Bement, W.M. &Capco, D.G. (1991). Analysis of inducible contractile rings suggest a role for protein kinase C in embryonic cytokinesis and wound healing. Cell Motil. Cytoskel. 20, 145–57.CrossRefGoogle ScholarPubMed
Bement, W.M.Gallicano, G.I. &Capco, D.G. (1992). Role of the cytoskeleton during early development. Microsc. Res. Tech. 22. 2348.CrossRefGoogle ScholarPubMed
Bluemink, J.G. (1972). Cortical would healing in the amphibian egg: an electron microscopical study. J. Ultrastruct. Res. 41, 95114.CrossRefGoogle ScholarPubMed
Campanella, C. & Gabbiani, G. (1980). Cytoskeletal and contractile proteins in coelomic oocytes, unfertilized and fertilized eggs of Discoglossus pictus(Anura). Gamete Res. 3, 99144.CrossRefGoogle Scholar
Campanella, C., Carotenuto, R. & Gabbiani, G. (1990). Antispectrin antibodies stain the oocyte nucleus and the site of fertilization channels in the egg of Discoglossus pictus (Anura). Mol. Reprod. Dev. 26, 134–42.CrossRefGoogle ScholarPubMed
Capco, D.G., Tutnick, J.M., & Bement, W.M. (1992). The role of protein kinase C in reorganization of the cortical cytoskeleton during the transition from oocyte to fertilization-component egg., J. Exp. Zool. 264. 395405.CrossRefGoogle ScholarPubMed
Christensen, K., Sauterer, R. & Merriam, R.W. (1984). Role of soluble myosin in cortical contractions of Xenopus eggs. Nature 310, 150–1.CrossRefGoogle ScholarPubMed
Danilchik, M.V. & Denegre, J.M. (1991). Deep cytoplasmic rearrangements during early development in Xenopus laevis. Development 111, 845–56.CrossRefGoogle ScholarPubMed
Elinson, R.P. (1977). Fertilization of immature frog eggs: cleavage and development following subsequent activation. J. Embryol. Exp. Morphol. 37, 187201.Google ScholarPubMed
Elinson, R.P. &Rowning, B. (1988). Transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128, 185–97.CrossRefGoogle ScholarPubMed
Evans, J.P., Page, B.D. & Kay, B.K. (1990). Talin and vinculin in the oocytes, eggs, and early embryos of Xenopus laevis: a developmentally regulated change in distribution. Dev. Biol. 137, 403–13.CrossRefGoogle ScholarPubMed
Ezzell, R.M., Cande, W.Z. & Brothers, A.J. (1985). Ca2+-ionophore-induced microvilli and cortical contractions in Xenopus eggs: evidence for involvement of actomyosin. Rouxs Arch. Dev. Biol. 194, 140–7.CrossRefGoogle Scholar
Franke, W.W., Rathke, P.C., Seib, E., Trendelenburg, M.F., Osborn, M. &Weber, K. (1976). Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie 14, 111–30.Google ScholarPubMed
Franz, J., Gall, L., Williams, M., Picheral, B. & Franke, W. (1983). Intermediate-size filaments in a germ cell: expression of cytokeratins in oocytes and eggs of the frog Xenopus. Proc. Natl. Acad. Sci. USA, 80, 6254–8.CrossRefGoogle Scholar
Gall, L., Bertrand, P. & Gounon, P. (1983). Cytochmical evidence for the presence of intermediate filaments and microfilaments in the egg of Xenopus laevis. Biol. Cell 47, 331–42.Google Scholar
Gerhart, J.Danilchik, M.Roberts, J.Rowning, B. & Vincent, J.-P.. (1986). Primary and secondary polarity of the amphibian oocyte and egg. In: Gametogenesis and the Early Embryo, ed. Gall, J.G., pp. 305–19. New York: Alan R. Liss.Google Scholar
Gingell, D. (1970). Contractile responses at the surface of an amphibian egg. J. Embryol. Exp. Morphol. 23, 583609.Google ScholarPubMed
Godsave, S.F., Wylie, C.C., Lane, E.B. & Anderton, B.H. (1984). Intermediate filaments in the xenopus oocytes: the appearance and distribution of cytokeratin-containing filaments. J. Embryol. Exp. Morphol. 83, 157–67.Google ScholarPubMed
Klymkowsky, M.W., Maynell, L.A., & Polson, A.G. (1987). Polar assymetry in the organization of the cortical cytokeratin system of xenopus laevis oocytes and embryos. Development 100, 543–57.CrossRefGoogle Scholar
Klymkowsky, M.W., Maynell, L.A. & Nislow, C. (1991). Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the material mRNA Vgl. J. Cell Biol. 114, 787–97.CrossRefGoogle Scholar
Mabuchi, I. (1990). Cleavage furrow formation and actinmodulating proteins. In: Cytokinesis: Mechanisms of Furrow Formation During Cell Division, ed. Conrad, G.W. & Schroeder, T.E.. Ann. NY Acad. Sci. 582, 131–46.Google Scholar
Meeusen, R.L. & Cande, W.Z., (1979). N-ethylmaleimide-modified heavy meromyosin: a probe for actomyosin interactions. J. Cell Biol. 82, 5765.CrossRefGoogle ScholarPubMed
Merriam, R.W. & Sauterer, R.A. (1983). Localization of a pigment-containing structure near the surface of Xenopus eggs which contracts in response to calcium. J. Embryol. Exp. Morphol. 76, 5165.Google ScholarPubMed
Merriam, R.W., Sauterer, R.A. & Christensen, K.A. (1983). A subcortical, pigment-containing structure in Xenopus eggs with contractile properties. Dev. Biol. 95, 439–46.CrossRefGoogle ScholarPubMed
Olson, J.H. & Capco, D.G. (1992). Crosstalk between MPF and protein kinase C in the organization of the cortical cytoskeleton. Mol. Biol. Cell 3, 7a.Google Scholar
Perry, M.M., John, H.A., & Thomas, N.S.T. (1971). Actin-like filaments in the cleavage furrow of newt egg. Exp. Cell Res. 65, 249–53.CrossRefGoogle ScholarPubMed
Ryabova, L.V. (1982). Electron microscopic study of the development of oocyte cortical contractibility in the common frog. Sov. J. Dev. Biol. 13, 266–73.Google Scholar
Ryabova, L.V. (1990). Organization of the cortical layer in amphibian eggs. II. Actin-containing structure in the cortex of xenopus laevis oocytes and eggs. Sov. J. Dev. Biol. 21, 369–75.Google Scholar
Ryabova, L.V. & Vassetzky, S.G. (1994). Involment of poly-merized actin in maintenance of the spatial organization of Xenopus laevis oocyte and its visualization in deep layers of the ooplasm. Ontogenez (in press).Google Scholar
Ryabova, L.V., Betina, M.I. & Vassetzky, S.G. (1986). Influence of cytochalasin B on oocyte maturation in Xenpopus laevis. Cell Differ. 19, 8996.CrossRefGoogle ScholarPubMed
Ryabova, L.V., Virtanen, I.Wartiovaara, J. & Vassetzky, S.G. (1992). Contracticle proteins and non-erythroid spectrin in oogenesis of Xenopus laevis. Ontogenez 23, 487500.Google Scholar
Ryabova, L.V., Virtanen, I.Wartiovaara, J. & Vassetzky, S.G. (1993). Contractile proteins and non-erythroid spectrin in oogenesis of Xenopus laevis. Mol. Reprod. Dev. (in press).Google Scholar
Schroeder, T.E. & Strickland, D.L. (1974). Ionophore A23187, calcium, and contractility in frog eggs. Exp. Cell Res. 83, 139–42.CrossRefGoogle ScholarPubMed
Tang, P., Sharpe, C.R., Mohun, T.J. & Wylie, C.C. (1988). Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis. Development 103, 279–87.CrossRefGoogle ScholarPubMed
Torpey, N.P., Heasman, J. & Wylie, C.C. (1992). Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos. J. Cell Sci. 101, 151–60.CrossRefGoogle ScholarPubMed
Virtanen, I., Badley, R., Paasivuo, P. & Lehto, V.P. (1984). Distinct cytoskeletal domains revealed in sperm cells. J. Cell Biol. 99, 1083–91.CrossRefGoogle ScholarPubMed