Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T15:54:23.864Z Has data issue: false hasContentIssue false

Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes

Published online by Cambridge University Press:  17 September 2014

Loredana Chierchia
Affiliation:
Department of Biology, University of Naples Federico II, Naples, Italy.
Margherita Tussellino
Affiliation:
Department of Biology, University of Naples Federico II, Naples, Italy.
Domenico Guarino
Affiliation:
Department of Biology, University of Naples Federico II, Naples, Italy.
Rosa Carotenuto
Affiliation:
Department of Biology, University of Naples Federico II, Naples, Italy.
Nadia DeMarco
Affiliation:
Department of Biology, University of Naples Federico II, Naples, Italy.
Chiara Campanella*
Affiliation:
Department of Pharmacy University of Salerno, Italy or Department of Biology, University of Naples Federico II, Naples, Italy.
Stefano Biffo
Affiliation:
Department of Science and Advanced Technology, University of Eastern Piedmont ‘Amedeo Avogadro’, Alessandria, Italy. DIBIT/University Vita-Salute San Raffaele Milan, Italy.
Maria Carmela Vaccaro*
Affiliation:
Department of Pharmacy University of Salerno, Italy or Department of Biology, University of Naples Federico II, Naples, Italy.
*
All correspondence to: Chiara Campanella, Department of Biology, University of Naples Federico II, Naples, Italy; Tel: +39 081679195; Fax +39 081679233; e-mail: chiara.campanella@unina.it (CC)
All correspondence to: Maria Carmela Vaccaro. Department of Pharmacy University of Salerno, Italy; Tel: +39 08996940; Fax +39 089969602; e-mail: mvaccaro@unisa.it (MCV)

Summary

Actin-based cytoskeleton (CSK) and microtubules may bind to RNAs and related molecules implicated in translation. However, many questions remain to be answered regarding the role of cytoskeletal components in supporting the proteins involved in steps in the maturation and translation processes. Here, we performed co-immunoprecipitation and immunofluorescence to examine the association between spectrins, keratins and tubulin and proteins involved in 60S ribosomal maturation and translation in Xenopus stage I oocytes, including ribosomal rpl10, eukaryotic initiation factor 6 (Eif6), thesaurins A/B, homologs of the eEF1α elongation factor, and P0, the ribosomal stalk protein. We found that rpl10 and eif6 cross-reacted with the actin-based CSK and with tubulin. rpl10 co-localizes with spectrin, particularly in the perinuclear region. eif6 is similarly localized. Given that upon ribosomal maturation, the insertion of rpl10 into the 60S subunit occurs simultaneously with the release of eif6, one can hypothesise that actin-based CSK and microtubules provide the necessary scaffold for the insertion/release of these two molecules and, subsequently, for eif6 transport and binding to the mature 60S subunit. P0 and thesaurins cross-reacted with only spectrin and cytokeratins. Thesaurins aggregated at the oocyte periphery, rendering this a territory favourable site for protein synthesis; the CSK may support the interaction between thesaurins and sites of the translating ribosome. Moreover, given that the assembly of the ribosome stalk, where P0 is located, to the 60S subunit is essential for the release of eif6, it can be hypothesised that the CSK can facilitate the binding of the stalk to the 60S.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–20.CrossRefGoogle ScholarPubMed
Bassell, G.J., Power, C.M., Taneja, K.L. & Singer, R.H. (1994). Single mRNAs visualised by ultrastructural in situ hybridization are principally localised at actin filament intersections in fibroblasts. J. Cell Biol. 126, 863–74.CrossRefGoogle ScholarPubMed
Basu, U., Si, K., Warner, J.R. & Maitra, U. (2001). The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 21, 1453–62.CrossRefGoogle ScholarPubMed
Bataille, N., Helsen, T. & Fried, H.M. (1990). Cytoplasmic transport of ribosomal subunits microinjected into Xenopus laevis nucleus: a generalised facilitated process. J. Cell Biol. 111, 1571–82.CrossRefGoogle ScholarPubMed
Bennett, V. & Gilligan, D.M. (1993). The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu. Rev. Cell Biol. 9, 2766.CrossRefGoogle ScholarPubMed
Biffo, S., Sanvito, F., Costa, S., Preve, L., Pignatelli, R. & Spinardi, L. (1997). Isolation of a novel β4 integrin binding protein (p27BBP) highly expressed in epithelial cells. J. Biol. Chem. 272, 30314–21.CrossRefGoogle ScholarPubMed
Brina, D., Grosso, S., Miluzio, A. & Biffo, S. (2011). Translational control by 80S formation and 60S availability. Cell Cycle 10, 16.CrossRefGoogle ScholarPubMed
Carotenuto, R., Maturi, G., Infante, V., Capriglione, T., Petrucci, T. & Campanella, C. (1997). A novel protein cross-reacting with antibodies against spectrin is localized in the nucleoli of oocytes. J. Cell Sci. 110, 2683–90.CrossRefGoogle ScholarPubMed
Carotenuto, R., Vaccaro, M.C., Capriglione, T., Petrucci, T.C. & Campanella, C. (2000). Alpha-spectrin has a stage-specific asymmetrical localization during Xenopus oogenesis. Mol. Reprod. Dev. 55, 229–39.3.0.CO;2-6>CrossRefGoogle Scholar
Carotenuto, R., Vaccaro, M.C., De Marco, N., Wilding, M., Biffo, S., Marchisio, P.C., Capriglione, T. & Campanella, C. (2005). p27BBP/IF6 is phosphorylated and associated with the cytoskeleton in relation to stages of oogenesis in Xenopus laevis. Cell. Mol. Life Sci. 62, 1641–52.CrossRefGoogle Scholar
Carotenuto, R., Petrucci, T.C., Correas, I., Vaccaro, M.C., De Marco, N., Dale, B. & Wilding, M. (2009). Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis. Eur. J. Cell Biol. 88, 343–56.CrossRefGoogle ScholarPubMed
Ceci, M., Gaviraghi, C., Gorrini, C., Sala, L.A., Offenhauser, N. & Marchisio, P.C. (2003). Release of elF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–84.CrossRefGoogle Scholar
Dick, F.A. & Trumpower, B.L. (1998). Heterologous complementation reveals that mutant alleles of QSR1 render 60S ribosomal subunits unstable and translationally inactive. Nucleic Acid Res. 26, 2442–8.CrossRefGoogle ScholarPubMed
Dowdy, S.F., Lai, K.M., Weissman, B.E., Matsui, Y., Hogan, B.L. & Stanbridge, E.J. (1991). The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms’ microcell hybrid cells. Nucleic Acids Res. 19, 5763–9.CrossRefGoogle ScholarPubMed
Ephrussi, A., Dickinsons, L.K. & Lehman, R. (1991). Oskar organizes the germ plasma and directs localization of the posterior determinant nanos. Cell 66, 3750.CrossRefGoogle Scholar
Finch, A.J., Hilcenko, C., Basse, N., Drynan, L.F., Goyenechea, B. & Menne, T.F. (2011). Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Gene Dev. 25, 917–29.CrossRefGoogle ScholarPubMed
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I.W. (1997). CRM1 is an export receptor fpr leucine-rich nuclear export signals. Cell 90, 1051–60.CrossRefGoogle Scholar
Gadal, O.D., Strauß, J., Kessl, B., Trumpower, D. & Tollervey, E. (2001). Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21, 3405–15.CrossRefGoogle ScholarPubMed
Gandin, V., Miluzio, A., Barbieri, A., Magri, L., Kiyokawa, H. & Marchisio, P.C. (2008). eIF6 is rate limiting for translation, growth and transformation. Nature 455, 684–8.CrossRefGoogle ScholarPubMed
Gard, D., Affleck, D. & Error, B.M. (1995). Microtubule organization, acetylation and nucleation in Xenopus lavis oocytes; II. A developmental transition in microtubule organization during diplotene. Dev. Biol. 168, 189201.CrossRefGoogle Scholar
Gard, D.L., Cha, B.J. & King, E. (1997). The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules. Dev. Biol. 184, 95114.CrossRefGoogle ScholarPubMed
Gartman, M., Blau, M., Armache, J.P., Mielke, T., Topf, M. & Beckman, R. (2010). Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 285, 14848–51.CrossRefGoogle Scholar
Godsave, S.F., Anderton, B.H., Heasman, J. & Wylie, C.C. (1984b). Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies. J. Embryol. Exp. Morphol. 83, 169–87.Google ScholarPubMed
Godsave, S.F., Wylie, C.C., Lane, E.B. & Anderton, B.H. (1984a). Intermediate filaments in the Xenopus oocyte: the appearance and distribution of cytokeratin-containing filaments. J. Embryol. Exp. Morphol. 83, 157–67.Google ScholarPubMed
Heasman, J., Quarmby, J.U. & Wylie, C.C. (1984). The mitochondrial cloud of Xenopus laevis: the source of germinal granule material. Dev. Biol. 105, 458–69.CrossRefGoogle ScholarPubMed
Hesketh, J., Campbell, G., Piechaczyk, M. & Blanchard, J.-M. (1994). Targetting of c-myc and β-globin coding sequences to the cytoskeletal-bound polysomes by c-myc 3′ untranslated region. Biochem J. 298 (Pt 1), 143–8.CrossRefGoogle Scholar
Heuijerjans, J.H., Pieper, F.R., Ramaekers, F.C., Timmermans, L.J., Kuijpers, H., Bloemendal, H. & van Venrooij, W.J. (1989). Association of mRNA and eIF-2 alpha with the cytoskeleton in cells lacking vimentin. Exp. Cell Res. 181, 317–30.CrossRefGoogle ScholarPubMed
Hovland, R., Hesketh, J.E. & Pryme, I.F. (1995). The compartmentalization of protein synthesis: importance of cytoskeleton and role in mRNA targetting. Int. J. Biochem. Cell Biol. 28, 1089–105.CrossRefGoogle Scholar
Jansen, R.P. (1999). RNA-cytoskeletal associations. FASEB J. 13, 455–66.CrossRefGoogle ScholarPubMed
Kallstrom, G., Hedges, J. & Johnson, A. (2003). The putative GTPases Nog1pand Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 23, 4344–55.CrossRefGoogle Scholar
King, M.L., Messit, T.J. & Mowry, K.L. (2005). Putting RNAs in the right place at the right time: RNA localisation in the frog oocyte. Biol. Cell. 97, 1933.CrossRefGoogle Scholar
Klymkowsky, M.W. (1995). Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. Curr. Topics Dev. Biol. 31, 455–86.CrossRefGoogle ScholarPubMed
Kloc, M. & Etkin, L.D. (1998). Apparent continuity between the messenger transport organizer and the late RNA localization pathway during oogenesis in Xenopus. Mech. Dev. 73, 95106.CrossRefGoogle ScholarPubMed
Kloc, M., Zearfoss, N.R. & Etkin, L.D. (2002). Mechanisms of subcellular mRNA localization. Cell 108, 533–44.CrossRefGoogle ScholarPubMed
Lebreton, A., Saveanu, C., Decourty, L., Rain, J-C., Jacquier, A. & Fromont-Racine, M. (2006). A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173, 349–60.CrossRefGoogle ScholarPubMed
Leung, K.M., van Horck, F.P., Lin, A.C., Allison, R., Standart, N. & Holt, C.E. (2006). Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 10, 1247–56.CrossRefGoogle Scholar
Lo, K.Y., Li, Z., Bussiere, C., Bresson, S., Marcotte, E.M. & Johnson, A.W. (2010). Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196208.CrossRefGoogle Scholar
Maturi, G., Infante, V., Carotenuto, R., Focarelli, R., Caputo, M. & Campanella, C. (1998). Specific glycoconjugates are present at the oolemma of the fertilization site in the egg of Discoglossus pictus (Anurans) and bind spermatozoa in an ‘in vitro’ assay. Dev. Biol. 204, 210–33.CrossRefGoogle Scholar
Negrutskii, B.S., Stapulionis, R. & Deutscher, M.P. (1994). Supramolecular organization of the mammalian translation system. Proc. Natl. Acad. Sci. USA 91, 964–8.CrossRefGoogle ScholarPubMed
Nissan, T.A., Bassler, J., Petfalski, E., Tollervey, D. & Hurt, E. (2002). 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21, 5539–47.CrossRefGoogle ScholarPubMed
Oberman, F. & Yisraeli, J.K. (1995). Two protocols for non-radioactive in situ hybridization to Xenopus oocytes. Trends Genet. 11, 83–4.Google Scholar
Ryabova, L.V., Virtanen, I., Wartiovaara, J. & Vassetzky, S.G. (1994). Contractile proteins and nonerythroid spectrin in oogenesis of Xenopus laevis. Mol. Reprod. Dev. 37, 99109.CrossRefGoogle Scholar
Sanvito, F., Piatti, S., Villa, A., Bossi, M., Lucchini, G., Marchisio, P.C. & Biffo, S. (1999). The beta 4 integrin interactor p27(BBP/elF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell Biol. 144, 823–37.CrossRefGoogle Scholar
Senger, B., Lafontaine, D.L., Graindorge, J.S., Gadal, O., Camasses, A., Sanni, A., Garnier, J.M., Breitenbach, M., Hurt, E. & Fasiolo, F. (2001). The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–73.CrossRefGoogle ScholarPubMed
Shestakova, E.A., Motuz, L.P. & Gavrilova, L.P. (1993). Co-localization of components of the protein-synthesizing machinery with the cytoskeleton in G0-arrested cells. Cell Biol. Int. 17, 417–24.CrossRefGoogle ScholarPubMed
Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A. & Nishida, E. (1994). Microtubule severing by elongation factor 1 alpha. Science 266, 282–5.CrossRefGoogle ScholarPubMed
Stapulionis, R., Kolli, S. & Deutscher, M.P. (1997). Efficient mammalian protein synthesis requires an intact F-actin system. J. Biol. Chem. 272, 24980–6.CrossRefGoogle ScholarPubMed
Taneja, K.L., Lifshitz, L.M., Fay, F.S. & Singer, R.H. (1992). Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J. Cell. Biol. 119, 1245–60.CrossRefGoogle ScholarPubMed
Traub, P., Bauer, C., Harting, R., Grub, S. & Stahl, J. (1998). Colocalization of single ribosomes with intermediate filament in puromycin-treated and serum–starved mouse embryo fibroblasts. Biol. Cell 90, 319–37.Google ScholarPubMed
Uchiumi, T., Honma, S., Endo, Y. & Hachimori, A. (2002). Ribosomal proteins at the stalk region modulate functional rRNA structures in the GTPase center. J. Biol. Chem. 277, 41401–9.CrossRefGoogle ScholarPubMed
Vaccaro, M.C., Gigliotti, S., Graziani, F., Carotenuto, R., De Angelis, C., Tussellino, M. & Campanella, C. (2010). A transient asymmetric distribution of XNOA 36 mRNA and the associated spectrin network bisects Xenopus laevis stage I oocytes along the future A/V axis. Eur. J. Cell Biol. 89, 525–36.CrossRefGoogle Scholar
Vaccaro, M.C., Wilding, M., Dale, B., Campanella, C. & Carotenuto, R. (2012). Expression of XNOA36 in the mitochondrial cloud of Xenopus laevis oocytes. Zygote 20, 237–42.CrossRefGoogle ScholarPubMed
Viel, A., Le Mair, M., Morales, J. & Denis, H. (1991). Structural and functional properties of thesaurin (42Sp50), the major protein of the 42S particles present in Xenopus laevis. J. Biol. Chem. 114, 1109–11.Google Scholar
West, M., Hedges, J., Chen, A. & Johnson, A. (2005). Defining the order in which Nmd3 and Rpl10 load onto nascent ribosomal subunit. Mol. Cell Biol. 25, 3802–13.CrossRefGoogle Scholar
Yao, J., Sasaki, Y., Wen, Z., Bassell, G.J. & Zheng, J.Q. (2006). An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat. Neurosci. 9, 1265–73.CrossRefGoogle ScholarPubMed