Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-16T15:56:19.116Z Has data issue: false hasContentIssue false

Treatment of mice with maternal intermittent fasting to improve the fertilization rate and reproduction

Published online by Cambridge University Press:  13 May 2024

Yanan Wang
Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong, China
Xin Li
The People’s Hospital of Binzhou, Binzhou 256600, Shandong, China
Ruiting Gong
Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong, China
Yu Zhao*
Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, Shandong, China
Corresponding author: Yu Zhao; Email:


Maternal intermittent fasting (MIF) can have significant effects on several tissue and organ systems of the body, but there is a lack of research on the effects on the reproductive system. So, the aim of our study was to analyze the effects of MIF on fertility. B6C3F1Crl (C57BL/6N × C3H/HeN) male and female mice were selected for the first part of the experiments and were analyzed for body weight and fat weight after administration of the MIF intervention, followed by analysis of sperm counts and activation and embryo numbers. Subsequently, two strains of mice, C57BL/6NCrl and BALB/cJRj, were selected and administered MIF to observe the presence or absence of vaginal plugs for the purposes of mating success, sperm and oocyte quality, pregnancy outcome, fertility status and in vitro fertilization (IVF). Our results showed a significant reduction in body weight and fat content in mice receiving MIF intervention in B6C3F1Crl mice. Comparing the reproduction of the two strains of mice. However, the number of litters was increased in all MIF interventions in C57BL/6NCrl, but not statistically significant. In BALB/cJRj, there was a significant increase in the number of pregnant females as well as litter size in the MIF treatment group, as well as vaginal plugs, and IVF. There was also an increase in sperm activation and embryo number and the MIF intervention significantly increased sperm count and activation. Our results suggest that MIF interventions may be beneficial for reproduction in mice.

Research Article
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alidadi, M., Banach, M., Guest, P. C., Bo, S., Jamialahmadi, T. and Sahebkar, A. (2021). The effect of caloric restriction and fasting on cancer. Seminars in Cancer Biology, 73, 3044. doi: 10.1016/j.semcancer.2020.09.010 CrossRefGoogle Scholar
Alkhalefah, A., Dunn, W. B., Allwood, J. W., Parry, K. L., Houghton, F. D., Ashton, N. and Glazier, J. D. (2021). Maternal intermittent fasting during pregnancy induces fetal growth restriction and down-regulated placental system A amino acid transport in the rat. Clinical Science, 135(11), 14451466. doi: 10.1042/CS20210137 CrossRefGoogle ScholarPubMed
Alkhalefah, A., Eyre, H. J., Hussain, R., Glazier, J. D. and Ashton, N. (2022). Impact of maternal intermittent fasting during pregnancy on cardiovascular, metabolic and renal function in adult rat offspring. PLOS ONE, 17(3), e0258372. doi: 10.1371/journal.pone.0258372 CrossRefGoogle ScholarPubMed
Bartke, A. (2005). Minireview: Role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology, 146(9), 37183723. doi: 10.1210/en.2005-0411 CrossRefGoogle ScholarPubMed
Bartke, A., Chandrashekar, V., Bailey, B., Zaczek, D. and Turyn, D. (2002). Consequences of growth hormone (GH) overexpression and GH resistance. Neuropeptides, 36(2–3), 201208. doi: 10.1054/npep.2002.0889 CrossRefGoogle ScholarPubMed
Bordone, L. and Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews. Molecular Cell Biology, 6(4), 298305. doi: 10.1038/nrm1616 CrossRefGoogle ScholarPubMed
Brownstein, D. G. (2003) Review of Nagy, A., Gertsenstein, M., Vintersten, V. and Behringer. R. (eds.). Manipulating the Mouse Embryo: A Laboratory Manual. Third Edition Quarterly Review of Biology, 78(3), 365365. doi: 10.1086/380032.CrossRefGoogle Scholar
Carey, J. R. and Molleman, F. (2010). Reproductive aging in tephritid fruit flies. Annals of the New York Academy of Sciences, 1204, 139148. doi: 10.1111/j.1749-6632.2010.05530.x CrossRefGoogle ScholarPubMed
Chang, H. and Suarez, S. S. (2010). Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biology of Reproduction, 83(4), 507513. doi: 10.1095/biolreprod.109.083113 CrossRefGoogle ScholarPubMed
Chico-Sordo, L., Córdova-Oriz, I., Polonio, A. M., S-Mellado, L. S., Medrano, M., García-Velasco, J. A. and Varela, E. (2021 ). Reproductive aging and telomeres: Are women and men equally affected? Mechanisms of Ageing and Development, 198, 111541. doi: 10.1016/j.mad.2021.111541 CrossRefGoogle ScholarPubMed
Coy, P. and Avilés, M. (2010). What controls polyspermy in mammals, the oviduct or the oocyte? Biological Reviews of the Cambridge Philosophical Society, 85(3), 593605. doi: 10.1111/j.1469-185X.2009.00117.x CrossRefGoogle ScholarPubMed
Darmaun, D. (2021). Maternal intermittent fasting during pregnancy: A translational research challenge for an important clinical scenario. Clinical Science, 135(17), 20992102. doi: 10.1042/CS20210578 CrossRefGoogle ScholarPubMed
Dey, S. K. (2010). How we are born. The Journal of Clinical Investigation, 120(4), 952955. doi: 10.1172/JCI42380 CrossRefGoogle ScholarPubMed
Fanti, M., Mishra, A., Longo, V. D. and Brandhorst, S. (2021). Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Current Obesity Reports, 10(2), 7080. doi: 10.1007/s13679-021-00424-2 CrossRefGoogle ScholarPubMed
Frick, K. M., Burlingame, L. A., Arters, J. A. and Berger-Sweeney, J. (2000). Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex. Neuroscience, 95(1), 293307. doi: 10.1016/s0306-4522(99)00418-2 CrossRefGoogle ScholarPubMed
Fujinoki, M., Suzuki, T., Takayama, T., Shibahara, H. and Ohtake, H. (2006). Profiling of proteins phosphorylated or dephosphorylated during hyperactivation via activation on hamster spermatozoa. Reproductive Medicine and Biology, 5(2), 123135. doi: 10.1007/BF03016148 Google ScholarPubMed
Fujinoki, M., Takei, G. L. and Kon, H. (2016). Non-genomic regulation and disruption of spermatozoal in vitro hyperactivation by oviductal hormones. The Journal of Physiological Sciences, 66(3), 207212. doi: 10.1007/s12576-015-0419-y CrossRefGoogle ScholarPubMed
Garolla, A., Pizzol, D., Carosso, A. R., Borini, A., Ubaldi, F. M., Calogero, A. E., Ferlin, A., Lanzone, A., Tomei, F., Engl, B., Rienzi, L., De Santis, L., Coticchio, G., Smith, L., Cannarella, R., Anastasi, A., Menegazzo, M., Stuppia, L., Corsini, C. and Foresta, C. (2020). Practical clinical and diagnostic pathway for the investigation of the infertile couple. Frontiers in Endocrinology (Lausanne) 11, 591837. doi: 10.3389/fendo.2020.591837.CrossRefGoogle ScholarPubMed
Gautier, V., Levert, E., Giraud, T. and Silar, P. (2021). Important role of melanin for fertility in the fungus Podospora anserina G3 (Bethesda), 11(8), jkab159. doi: 10.1093/g3journal/jkab159 CrossRefGoogle ScholarPubMed
Gnoth, C., Godehardt, E., Frank-Herrmann, P., Friol, K., Tigges, J. and Freundl, G. (2005). Definition and prevalence of subfertility and infertility. Human Reproduction, 20(5), 11441147. doi: 10.1093/humrep/deh870 CrossRefGoogle ScholarPubMed
Günbatar, N., Bulduk, B., Bezgin, S., Oto, G., Bayıroğlu, F. and Bulduk, M. (2023). The effect of moderate-intensity physical exercise on some serum inflammation markers and the immune system in rats fed intermittent fasting with a high-fat diet. Medicina, 59(9), 1687. doi: 10.3390/medicina59091687 CrossRefGoogle ScholarPubMed
Hellemans, S., Dolejšová, K., Křivánek, J., Fournier, D., Hanus, R. and Roisin, Y. (2019). Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evolutionary Biology, 19(1), 131. doi: 10.1186/s12862-019-1459-3 CrossRefGoogle ScholarPubMed
Hofer, S. J., Carmona-Gutierrez, D., Mueller, M. I. and Madeo, F. (2022). The ups and downs of caloric restriction and fasting: From molecular effects to clinical application. EMBO Molecular Medicine, 14(1), e14418. doi: 10.15252/emmm.202114418 CrossRefGoogle ScholarPubMed
Inhorn, M. C. and Patrizio, P. (2015). Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Human Reproduction Update, 21(4), 411426. doi: 10.1093/humupd/dmv016 CrossRefGoogle ScholarPubMed
Jayet, P. Y., Rimoldi, S. F., Stuber, T., Salmòn, C. S., Hutter, D., Rexhaj, E., Thalmann, S., Schwab, M., Turini, P., Sartori-Cucchia, C. Nicod, P., Villena, M., Allemann, Y., Scherrer, U. and Sartori, C. (2010). Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation, 122(5), 488494. doi: 10.1161/CIRCULATIONAHA.110.941203 CrossRefGoogle ScholarPubMed
Jeyendran, R. S., Caroppo, E., Rouen, A., Anderson, A. and Puscheck, E. (2019). Selecting the most competent sperm for assisted reproductive technologies. Fertility and Sterility, 111(5), 851863. doi: 10.1016/j.fertnstert.2019.03.024 CrossRefGoogle ScholarPubMed
Li, C., Zhang, H., Wu, H., Li, R., Wen, D., Tang, Y., Gao, Z., Xu, R., Lu, S., Wei, Q., Zhao, X., Pan, M. and Ma, B. (2023). Intermittent fasting reverses the declining quality of aged oocytes. Free Radical Biology and Medicine, 195, 7488. doi: 10.1016/j.freeradbiomed.2022.12.084 CrossRefGoogle ScholarPubMed
Liang, Y., Yin, W., Luo, C., Sun, L., Feng, T., Zhang, Y., Yin, Y. and Zhang, W. (2023). Maternal intermittent fasting in mice disrupts the intestinal barrier leading to metabolic disorder in adult offspring. Communications Biology, 6(1), 30. doi: 10.1038/s42003-022-04380-y CrossRefGoogle ScholarPubMed
Liu, Y. and Gao, J. (2023). Reproductive aging: Biological pathways and potential interventive strategies. Journal of Genetics and Genomics, 50(3), 141150. doi: 10.1016/j.jgg.2022.07.002 CrossRefGoogle ScholarPubMed
Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. and Kroemer, G. (2019). Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metabolism, 29(3), 592610. doi: 10.1016/j.cmet.2019.01.018 CrossRefGoogle ScholarPubMed
Maleszewski, M., Kline, D. and Yanagimachi, R. (1995). Activation of hamster zona-free oocytes by homologous and heterologous spermatozoa. Journal of Reproduction and Fertility, 105(1), 99107. doi: 10.1530/jrf.0.1050099 CrossRefGoogle ScholarPubMed
Mao, X.-Y., Yin, X.-X., Guan, Q.-W., Xia, Q.-X., Yang, N., Zhou, H.-H., Liu, Z.-Q. and Jin, W.-L. (2021). Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacology and Therapeutics, 226, 107861. doi: 10.1016/j.pharmthera.2021.107861 CrossRefGoogle ScholarPubMed
Martin, B., Pearson, M., Brenneman, R., Golden, E., Wood, W., Prabhu, V., Becker, K. G., Mattson, M. P. and Maudsley, S. (2009). Gonadal transcriptome alterations in response to dietary energy intake: Sensing the reproductive environment. PLOS ONE, 4(1), e4146. doi: 10.1371/journal.pone.0004146 CrossRefGoogle ScholarPubMed
Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, 126(9), 913922. doi: 10.1016/j.mad.2005.03.012 CrossRefGoogle ScholarPubMed
Matzuk, M. M. and Lamb, D. J. (2008). The biology of infertility: Research advances and clinical challenges. Nature Medicine, 14(11), 11971213. doi: 10.1038/nm.f.1895 CrossRefGoogle ScholarPubMed
McCay, C. M., Crowell, M. F. and Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 5(3), 155171; discussion 172. doi: 10.1093/jn/10.1.63 Google ScholarPubMed
McShane, T. M. and Wise, P. M. (1996). Life-long moderate caloric restriction prolongs reproductive life span in rats without interrupting estrous cyclicity: Effects on the gonadotropin-releasing hormone/luteinizing hormone axis. Biology of Reproduction, 54(1), 7075. doi: 10.1095/biolreprod54.1.70 CrossRefGoogle ScholarPubMed
Mizusawa, K., Kasagi, S. and Takahashi, A. (2018). Melanin-concentrating hormone is a major substance mediating light wavelength-dependent skin color change in larval zebrafish. General and Comparative Endocrinology, 269, 141148. doi: 10.1016/j.ygcen.2018.09.006 CrossRefGoogle Scholar
Moatt, J. P., Nakagawa, S., Lagisz, M. and Walling, C. A. (2016). The effect of dietary restriction on reproduction: A meta-analytic perspective. BMC Evolutionary Biology, 16(1), 199. doi: 10.1186/s12862-016-0768-z CrossRefGoogle ScholarPubMed
Mortimer, S. T. (1997). A critical review of the physiological importance and analysis of sperm movement in mammals. Human Reproduction Update, 3(5), 403439. doi: 10.1093/humupd/3.5.403 CrossRefGoogle ScholarPubMed
Ohta, H., Sakaide, Y. and Wakayama, T. (2009). Age- and substrain-dependent sperm abnormalities in BALB/c mice and functional assessment of abnormal sperm by ICSI. Human Reproduction, 24(4), 775781. doi: 10.1093/humrep/den456 CrossRefGoogle ScholarPubMed
Papakonstantinou, E., Oikonomou, C., Nychas, G. and Dimitriadis, G. D. (2022). Effects of diet, lifestyle, chrononutrition and alternative dietary interventions on postprandial glycemia and insulin resistance. Nutrients, 14(4), 823. doi: 10.3390/nu14040823 CrossRefGoogle ScholarPubMed
Patterson, R. E. and Sears, D. D. (2017). Metabolic effects of intermittent fasting. Annual Review of Nutrition, 37, 371393. doi: 10.1146/annurev-nutr-071816-064634 CrossRefGoogle ScholarPubMed
Perlman, R. L. (2016). Mouse models of human disease: An evolutionary perspective. Evolution, Medicine, and Public Health, 2016(1), 170176. doi: 10.1093/emph/eow014 Google ScholarPubMed
Pifferi, F. and Aujard, F. (2019). Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 95, 109702. doi: 10.1016/j.pnpbp.2019.109702 CrossRefGoogle ScholarPubMed
Rhoads, T. W. and Anderson, R. M. (2022). Caloric restriction has a new player. Science, 375(6581), 620621. doi: 10.1126/science.abn6576 CrossRefGoogle Scholar
Rix, R. R. and Cutler, G. C. (2021). Neonicotinoid exposures that stimulate predatory stink bug, Podisus maculiventris (Hemiptera: Pentatomidae), reproduction do not inhibit its behavior. Journal of Economic Entomology, 114(4), 15751581. doi: 10.1093/jee/toab085 CrossRefGoogle Scholar
Scheu, S. and Simmerling, F. (2004). Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia, 139(3), 347353. doi: 10.1007/s00442-004-1513-7 CrossRefGoogle ScholarPubMed
Secomandi, L., Borghesan, M., Velarde, M. and Demaria, M. (2022). The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Human Reproduction Update, 28(2), 172189. doi: 10.1093/humupd/dmab038 CrossRefGoogle ScholarPubMed
Selesniemi, K., Lee, H.-J. and Tilly, J. L. (2008). Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell, 7(5), 622629. doi: 10.1111/j.1474-9726.2008.00409.x CrossRefGoogle ScholarPubMed
Sharif, M., Hickl, V., Juarez, G., Di, X., Kerns, K., Sutovsky, P., Bovin, N. and Miller, D. J. (2022). Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Scientific Reports, 12(1), 6446. doi: 10.1038/s41598-022-10390-x CrossRefGoogle ScholarPubMed
Sherrer, E. S., Rathbun, T. J. and Davis, D. L. (2004). Fertilization and blastocyst development in oocytes obtained from prepubertal and adult pigs. Journal of Animal Science, 82(1), 102108. doi: 10.2527/2004.821102x CrossRefGoogle ScholarPubMed
Snow, M., Vranich, T. M., Perin, J. and Trent, M. (2022). Estimates of infertility in the United States: 1995–2019. Fertility and Sterility, 118(3), 560567. doi: 10.1016/j.fertnstert.2022.05.018 CrossRefGoogle ScholarPubMed
Suarez, S. S. (2008). Control of hyperactivation in sperm. Human Reproduction Update, 14(6), 647657. doi: 10.1093/humupd/dmn029 CrossRefGoogle ScholarPubMed
Sugiyama, Y., Fujinoki, M. and Shibahara, H. (2019). Effects of 5-hydroxytryptamine on spermatozoal hyperactivation and in vitro fertilization in mice. The Journal of Reproduction and Development, 65(6), 541550. doi: 10.1262/jrd.2019-082 CrossRefGoogle ScholarPubMed
Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E. and Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 12121221.e3. doi: 10.1016/j.cmet.2018.04.010 CrossRefGoogle ScholarPubMed
Takei, H. (2022). Super-activated control of sperm flagellar movement by a transporter that controls sodium homeostasis. Nihon Yakurigaku Zasshi [Japanese Pharmacology Journal], 157(3), 176180. doi: 10.1254/fpj.21110 Google Scholar
Takeo, T., Nakao, S., Mikoda, N., Yamaga, K., Maeda, R., Tsuchiyama, S., Nakatsukasa, E. and Nakagata, N. (2022). Optimized protocols for sperm cryopreservation and in vitro fertilization in the rat. Laboratory Animals (NY), 51(10), 256274. doi: 10.1038/s41684-022-01053-5 CrossRefGoogle ScholarPubMed
Trepanowski, J. F., Kroeger, C. M., Barnosky, A., Klempel, M. C., Bhutani, S., Hoddy, K. K., Gabel, K., Freels, S., Rigdon, J., Rood, J., Ravussin, E. and Varady, K. A. (2017). Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Internal Medicine, 177(7), 930938. doi: 10.1001/jamainternmed.2017.0936 CrossRefGoogle ScholarPubMed
Varady, K. A., Cienfuegos, S., Ezpeleta, M. and Gabel, K. (2021). Cardiometabolic benefits of intermittent fasting. Annual Review of Nutrition, 41, 333361. doi: 10.1146/annurev-nutr-052020-041327 CrossRefGoogle ScholarPubMed
Varady, K. A., Cienfuegos, S., Ezpeleta, M. and Gabel, K. (2022). Clinical application of intermittent fasting for weight loss: Progress and future directions. Nature Reviews. Endocrinology, 18(5), 309321. doi: 10.1038/s41574-022-00638-x CrossRefGoogle ScholarPubMed
Vasim, I., Majeed, C. N. and DeBoer, M. D. (2022). Intermittent fasting and metabolic health. Nutrients, 14(3), 631. doi: 10.3390/nu14030631 CrossRefGoogle ScholarPubMed
Vasudevan, K., Raber, J. and Sztein, J. (2010). Fertility comparison between wild type and transgenic mice by in vitro fertilization. Transgenic Research, 19(4), 587594. doi: 10.1007/s11248-009-9336-2 CrossRefGoogle ScholarPubMed
Weindruch, R. and Sohal, R. S. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. The New England Journal of Medicine, 337(14), 986994. doi: 10.1056/NEJM199710023371407 CrossRefGoogle Scholar
Whittingham, D. G. (1971). Culture of mouse ova. Journal of Reproduction and Fertility. Supplement, 14, 721.Google ScholarPubMed
Wu, M., Dumalska, I., Morozova, E., van den Pol, A. and Alreja, M. (2009). Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 1721717222. doi: 10.1073/pnas.0908200106 CrossRefGoogle ScholarPubMed
Xiang, Y., Xu, J., Li, L., Lin, X., Chen, X., Zhang, X., Fu, Y. and Luo, L. (2012). Calorie restriction increases primordial follicle reserve in mature female chemotherapy-treated rats. Gene, 493(1), 7782. doi: 10.1016/j.gene.2011.11.019 CrossRefGoogle ScholarPubMed
Xu, J., Hou, F., Wang, D., Li, J. and Yang, G. (2019). Characterization and expression of melanin-concentrating hormone (MCH) in common carp (Cyprinus carpio) during fasting and reproductive cycle. Fish Physiology and Biochemistry, 45(2), 805817. doi: 10.1007/s10695-018-0586-x CrossRefGoogle ScholarPubMed
Yin, W., Liang, Y., Sun, L., Yin, Y. and Zhang, W. (2021). Maternal intermittent fasting before mating alters hepatic DNA methylation in offspring. Epigenomics, 13(5), 341356. doi: 10.2217/epi-2020-0403 CrossRefGoogle ScholarPubMed
Yin, W., Sun, L., Liang, Y., Luo, C., Feng, T., Zhang, Y., Zhang, W. and Yin, Y. (2023). Maternal intermittent fasting deteriorates offspring metabolism via suppression of hepatic mTORC1 signaling. FASEB Journal, 37(4), e22831. doi: 10.1096/fj.202201907R CrossRefGoogle ScholarPubMed
Zaferani, M., Suarez, S. S. and Abbaspourrad, A. (2021). Mammalian sperm hyperactivation regulates navigation via physical boundaries and promotes pseudo-chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 118(44). doi: 10.1073/pnas.2107500118 Google ScholarPubMed
Zeydan, B. (2021). Reproductive aging and Alzheimer disease biomarkers: An evolving field. Menopause, 28(10), 10831084. doi: 10.1097/GME.0000000000001857 CrossRefGoogle ScholarPubMed
Zhu, J., Barratt, C. L., Lippes, J., Pacey, A. A. and Cooke, I. D. (1994). The sequential effects of human cervical mucus, oviductal fluid, and follicular fluid on sperm function. Fertility and Sterility, 61(6), 11291135. doi: 10.1016/s0015-0282(16)56768-5 CrossRefGoogle ScholarPubMed