Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T13:50:16.010Z Has data issue: false hasContentIssue false

Expression of the T85A mutant of zebrafish aquaporin 3b improves post-thaw survival of cryopreserved early mammalian embryos

Published online by Cambridge University Press:  05 October 2016

Sylvia J. Bedford-Guaus
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
François Chauvigné
Institut de Recerca i Tecnologia Agroalimentàries (IRTA) – Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
Eva Mejía-Ramírez
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain.
Mercè Martí
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain.
Antoni Ventura-Rubio
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain.
Ángel Raya*
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain. Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
Joan Cerdà*
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain Institut de Recerca i Tecnologia Agroalimentàries (IRTA) – Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
Anna Veiga*
Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. Reproductive Medicine Service, Hospital Universitari Quirón-Dexeus, Barcelona, Spain.
Ángel Raya. Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. E-mail:
Joan Cerdà. Institut de Recerca i Tecnologia Agroalimentàries (IRTA)Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. E-mail:
All correspondence to: Anna Veiga. Centre de Medicina Regenerativa de Barcelona (CMRB), Barcelona, Spain. E-mail:


While vitrification has become the method of choice for preservation of human oocytes and embryos, cryopreservation of complex tissues and of large yolk-containing cells, remains largely unsuccessful. One critical step in such instances is appropriate permeation while avoiding potentially toxic concentrations of cryoprotectants. Permeation of water and small non-charged solutes, such as those used as cryoprotectants, occurs largely through membrane channel proteins termed aquaporins (AQPs). Substitution of a Thr by an Ala residue in the pore-forming motif of the zebrafish (Dario rerio) Aqp3b paralog resulted in a mutant (DrAqp3b-T85A) that when expressed in Xenopus or porcine oocytes increased their permeability to ethylene glycol at pH 7.5 and 8.5. The main objective of this study was to test whether ectopic expression of DrAqp3b-T85A also conferred higher resistance to cryoinjury. For this, DrAqp3b-T85A + eGFP (reporter) cRNA, or eGFP cRNA alone, was microinjected into in vivo fertilized 1-cell mouse zygotes. Following culture to the 2-cell stage, appropriate membrane expression of DrAqp3b-T85A was confirmed by immunofluorescence microscopy using a primary specific antibody directed against the C-terminus of DrAqp3b. Microinjected 2-cell embryos were then cryopreserved using a fast-freezing rate and low concentration (1.5 M) of ethylene glycol in order to highlight any benefits from DrAqp3b-T85A expression. Notably, post-thaw survival rates were higher (P<0.05) for T85A–eGFP-injected than for -uninjected or eGFP-injected embryos (73±7.3 vs. 28±7.3 or 14±6.7, respectively). We propose that ectopic expression of mutant AQPs may provide an avenue to improve cryopreservation results of large cells and tissues in which current vitrification protocols yield low survival.

Research Article
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abas Mazni, O., Valdez, C.A., Takahashi, Y., Hishinuma, M. & Kanagawa, H. (1990). Quick freezing of mouse embryos using ethylene glycol with lactose or sucrose. Anim. Reprod. Sci. 22, 161–9.CrossRefGoogle Scholar
Balaban, B., Urman, B., Ata, B., Isiklar, A., Larman, M.G., Hamilton, R. & Gardner, D.K. (2008). A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum. Reprod. 23, 1976–82.CrossRefGoogle ScholarPubMed
Brockbank, K.G. & Taylor, M.J. (2007). Tissue preservation. In Advances in Biopreservation (eds Baust, J.G. & Baust, J.M.), pp. 157196. Boca Raton, FL, USA: CRC Press.Google Scholar
Cha, S.K., Kim, B.Y., Kim, M.K., Kim, Y.S., Lee, W.S., Yoon, T.K. & Lee, D.R. (2011). Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin. Exp. Reprod. Med. 38, 2430.CrossRefGoogle ScholarPubMed
Chauvigné, F., Lubzens, E. & Cerdà, J. (2011). Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol. 11, 34.CrossRefGoogle Scholar
Denker, B.M., Smith, B.L., Kuhajda, F.P. & Agre, P. (1988). Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–42.CrossRefGoogle Scholar
Desai, N.N., Goldberg, J.M., Austin, C. & Falcone, T. (2013). The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage. Reprod. Biol. Endocrinol. 11, 19.CrossRefGoogle ScholarPubMed
Edashige, K., Yamaji, Y., Kleinhans, F.W. & Kasai, M. (2003). Artificial expression of aquaporin-3 improves de survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 8794.CrossRefGoogle Scholar
Edashige, K., Tanaka, M., Ichimaru, N., Ota, S., Yazawa, K., Higashino, Y., Sakamoto, M., Yamaji, Y., Kuwano, T., Valdez, D.M. Jr., Kleinhans, F.W. & Kasai, M. (2006). Channel-dependent permeation of water and glycerol in mouse morulae. Biol. Reprod. 74, 625–32.CrossRefGoogle ScholarPubMed
Edashige, K., Ohta, S., Tanaka, M., Kuwano, T., Valdez, D.M. Jr., Hara, T., Jin, B., Takahashi, S., Seki, S., Koshimoto, C. & Kasai, M. (2007). The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77, 365–73.CrossRefGoogle ScholarPubMed
Finn, R.N., Chauvigné, F., Hlidberg, J.B., Cutler, C.P. & Cerdà, J. (2014). The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 9, e113686.CrossRefGoogle ScholarPubMed
Gao, G. & Critser, J.K. (2000). Mechanisms of cryoinjury in living cells. ILAR J. 41, 187–96.CrossRefGoogle ScholarPubMed
Gomaa, H., Baydoun, R., Sachak, S., Lapana, I. & Soliman, S. (2016). Elective single embryo transfer: Is frozen better than fresh? JBRA Assisted Reproduction 20, 37.CrossRefGoogle ScholarPubMed
Griffin, J., Emery, B.R., Huang, I., Peterson, C.M. & Carrell, D.T. (2006). Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J. Exp. Clin. Assist. Reprod. 3, 2.CrossRefGoogle ScholarPubMed
Gutiérrez, A., Garde, J., Artiga, C.G., Muñoz, I. & Pintado, B. (1993). In vitro survival of murine morulae after quick freezing in the presence of chemically defined macromolecules and different cryoprotectants. Theriogenology 39, 1111–20.CrossRefGoogle ScholarPubMed
Hagedorn, M., Lance, S.L., Fonseca, D.M., Kleinhans, F.W., Artimov, D., Fleischer, R., Hoque, A.T.M.S., Hamilton, M.B. & Pukazhenthi, B.S. (2002). Altering fish embryos with aquaporin-3 an essential step toward successful cryopreservation. Biol. Reprod. 67, 961–6.CrossRefGoogle ScholarPubMed
Hansson, M.L., Albert, S., González Somermeyer, L., Peco, R., Mejía-Ramírez, E., Montserrat, N. & Izpisúa Belmonte, J.C. (2015). Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells. J. Biol. Chem. 290, 5661–72.CrossRefGoogle ScholarPubMed
Janik, M., Kleinhans, F.W. & Hagedorn, M. (2000). Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 41, 2534.CrossRefGoogle ScholarPubMed
Jin, B., Kawai, Y., Hara, T., Takeda, S., Seki, S., Nakata, Y., Matsukawa, K., Koshimoto, C., Kasai, M. & Edashige, K. (2011). Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biol. Reprod. 85, 834–47.CrossRefGoogle ScholarPubMed
Jin, B., Higashiyama, R., Nakata, Y., Yonezawa, J., Xu, S., Miyake, M., Takahasi, S., Kiluchi, K., Yazawa, K., Mizobuchi, S., Niimi, S., Kitayama, M., Koshimoto, C., Matsukawa, K., Kasai, M. & Edashige, K. (2013). Rapid movement of water and cryoprotectants in pig expanded blastocysts via channel processes: its relevance to their higher tolerance to cryopreservation. Biol. Reprod. 87, 112.Google Scholar
Kasai, M. (1996). Simple and efficient methods for vitrification of mammalian embryos. Anim. Reprod. Sci. 42, 6775.CrossRefGoogle Scholar
Kasai, M. & Mukaida, T. (2004). Cryopreservation of animal and human embryos by vitrification. Reprod. BioMed. Online 9, 164–70.CrossRefGoogle ScholarPubMed
King, L.S., Kozono, D. & Agre, P. (2004) From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 5, 687–98.CrossRefGoogle ScholarPubMed
Li, R., Murphy, C.N., Spate, L., Wax, D., Isom, c., Rieke, a., Walters, E.M., Samuel, M. & Prather, R.S. (2009). Production of piglets after cryopreservation of embryos using a centrifugation-based method for depilation without micromanipulation. Biol. Reprod. 80, 563–71.CrossRefGoogle Scholar
Maehara, M., Matsunari, H., Honda, K., Nakano, K., Takeuchi, Y., Kanai, T., Matsuda, T., Matsumura, Y., Hagiwara, Y., Sasayama, N., Shirasu, A., Takahashi, M., Watanage, M., Umeyama, K., Hanazono, Y. & Nagashima, H. (2012). Hollow fiber vitrification provides a novel method for cryopreserving in vitro maturation/fertilization-derived porcine embryos. Biol. Reprod. 87, 18.CrossRefGoogle ScholarPubMed
Mandal, P.K. & Rossi, D.J. (2013). Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 562–82.CrossRefGoogle ScholarPubMed
Mara, L., Casu, S., Carta, A. & Dattena, M. (2013). Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Anim. Reprod. Sci. 138, 2538.CrossRefGoogle ScholarPubMed
Morató, R., Chauvigné, F., Novo, S., Bonet, S. & Cerdà, J. (2014). Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol. Reprod. Dev. 81, 450–61.CrossRefGoogle ScholarPubMed
Nakano, K., Matsunari, H., Nakayama, N., Ogawa, B., Kurome, M, Takahashi, M., Matsumoto, M., Murakami, H., Kaji, Y. & Nagashima, H. (2011). Cloned porcine embryos can maintain developmental ability after cryopreservation at the morula stage. J. Reprod. Fert. 57, 312–6.Google ScholarPubMed
Pedro, P.B., Yokoyama, E., Zhu, S.E., Yoshida, N., Valdez, D.M. Jr., Tanaka, M., Edashige, K. & Kasai, M. (2005). Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Fert. 51, 235–46.Google ScholarPubMed
Rizos, D., Ward, F., Duffy, P., Boland, M.P. & Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–8.CrossRefGoogle ScholarPubMed
Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., de la Fuente, J., Boland, M.P. & Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–43.CrossRefGoogle ScholarPubMed
Sakagami, N., Nishida, K., Misumi, K., Hirayama, Y., Yamashita, S., Hoshi, H., Misawa, H., Akiyama, K., Suzuki, C. & Yoshioka, K. (2016). The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method. Anim. Reprod. Sci. 164, 40–6.CrossRefGoogle ScholarPubMed
Sales, A.D., Lobo, C.H., Carvalho, A.A., Moure, A.A. & Rodrigues, A.P.R. (2013). Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation. Gen. Mol. Res. 12, 6718–32.CrossRefGoogle ScholarPubMed
Seidel, G.E. Jr. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–35.CrossRefGoogle ScholarPubMed
Seki, S., Kouya, T., Hara, T., Valdez, D.M. Jr., Jin, B., Kasai, M. & Edashige, K. (2007). Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J. Reprod. Dev. 53, 597604.CrossRefGoogle ScholarPubMed
Tingaud-Sequeira, A., Calusinska, M., Chauvigné, F., Lozano, J., Finn, R.N. & Cerdà, J. (2010). The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to tetrapods. BMC Evol. Biol. 10, 38.CrossRefGoogle Scholar
Vajta, G. (2013). Vitrification in human and domestic animal embryology: work in progress. Reprod. Fert. Dev. 25, 719–27.CrossRefGoogle ScholarPubMed
Yamaji, Y., Valdez, D.M. Jr., Seki, S., Yazawa, K., Urakawa, C., Jin, B., Kasai, M., Kleinhans, F.W. & Edashige, K. (2006). Cryoprotectant permeability of aquaporin-3 expressed in Xenopus oocytes. Cryobiology 53, 258–67.CrossRefGoogle ScholarPubMed
Zeuthen, T. & Klaerke, D.A. (1999). Transport of water ad glycerol in aquaporin 3 is gated by H+ . J. Biol. Chem. 274, 21631–6.CrossRefGoogle Scholar
Zhang, T., Rawson, D.M., Pekarsky, I.B. & Lubzens, E. (2007). Low temperature preservation of fish gonad cells and oocytes. In The Fish Oocyte: From Basic Studies to Biotechnological Applications. (eds Babin, P., Cerdà, J. & Lubzens, E.) pp. 411436. Springer: The Netherlands.CrossRefGoogle Scholar