Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T05:11:14.464Z Has data issue: false hasContentIssue false

Embryological characteristics and clinical outcomes of oocytes with different degrees of abnormal zona pellucida during assisted reproductive treatment

Published online by Cambridge University Press:  29 November 2023

Junshun Fang
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Hua Sun
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Linjun Chen
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Jie Wang
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Fei Lin
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Zhipeng Xu
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Lihua Zhu*
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
Shanshan Wang*
Affiliation:
Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
*
Corresponding authors: Shanshan Wang; Email: wss_19860820@sina.com and Lihua Zhu; Email: 673907002@qq.com
Corresponding authors: Shanshan Wang; Email: wss_19860820@sina.com and Lihua Zhu; Email: 673907002@qq.com

Abstract

Abnormalities in the zona pellucida (ZP) adversely affect oocyte maturation, embryo development and pregnancy outcomes. However, the assessment of severity is challenging. To evaluate the effects of different degrees of ZP abnormalities on embryo development and clinical outcomes, in total, 590 retrieval cycles were scored and divided into four categories (control, mild, moderate and severe) based on three parameters: perivitelline space, percentage of immature oocytes and percentage of oocytes with abnormal morphology. As the severity of abnormal ZP increased, both the number of retrieved oocytes and mature oocytes decreased. The fertilization rate did not differ significantly among groups. The rates of embryo cleavage and day-3 high-quality embryos in the mild group and the moderate group did not vary significantly between the two groups but were significantly higher than those in the severe group. The blastulation rates of the abnormal ZP groups were similar; however, they were lower than those of the control group. Moreover, the cycle cancellation rate of the severe abnormal ZP group was as high as 66.20%, which was significantly higher than that of the other three groups. Although the rates of cumulative clinical pregnancy and live births were lower than those in the control group, they were comparable among the abnormal ZP groups. There were no differences in the neonatal outcomes of the different groups. Together, ZP abnormalities show various degrees of severity, and in all patients regardless of the degree of ZP abnormalities who achieve available embryos, there will be an opportunity to eventually give birth.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. (2011). The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Human Reproduction. 26(6), 12701283. doi: 10.1093/humrep/der037 CrossRefGoogle Scholar
Bartolacci, A., Intra, G., Coticchio, G., Dell’Aquila, M., Patria, G. and Borini, A. (2022). Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. Journal of Assisted Reproduction and Genetics, 39(1), 317. doi: 10.1007/s10815-021-02370-3 CrossRefGoogle ScholarPubMed
Canosa, S., Adriaenssens, T., Coucke, W., Dalmasso, P., Revelli, A., Benedetto, C. and Smitz, J. (2017). Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Molecular Human Reproduction, 23(5), 292303. doi: 10.1093/molehr/gax008 CrossRefGoogle ScholarPubMed
Cao, Q., Zhao, C., Zhang, X., Zhang, H., Lu, Q., Wang, C., Hu, Y., Ling, X., Zhang, J. and Huo, R. (2020). Heterozygous mutations in ZP1 and ZP3 cause formation disorder of ZP and female infertility in human. Journal of Cellular and Molecular Medicine, 24(15), 85578566. doi: 10.1111/jcmm.15482 CrossRefGoogle ScholarPubMed
de Almeida Ferreira Braga, D. P., de Cássia Savio Figueira, R., Queiroz, P., Madaschi, C., Iaconelli, A. Jr. and Borges, E. Jr. (2010). Zona pellucida birefringence in in vivo and in vitro matured oocytes. Fertility and Sterility, 94(6), 20502053. doi: 10.1016/j.fertnstert.2009.12.005 CrossRefGoogle ScholarPubMed
Gardner, D. K. and Schoolcraft, W. B. (1999). Culture and transfer of human blastocysts. Current Opinion in Obstetrics and Gynecology, 11(3), 307311. doi: 10.1097/00001703-199906000-00013 CrossRefGoogle ScholarPubMed
Huang, H. L., Lv, C., Zhao, Y. C., Li, W., He, X. M., Li, P., Sha, A. G., Tian, X., Papasian, C. J., Deng, H. W., Lu, G. X. and Xiao, H. M. (2014). Mutant ZP1 in familial infertility. New England Journal of Medicine, 370(13), 12201226. doi: 10.1056/NEJMoa1308851 CrossRefGoogle ScholarPubMed
Li, M., Ma, S. Y., Yang, H. J., Wu, K. L., Zhong, W. X., Yu, G. L. and Chen, Z. J. (2014). Pregnancy with oocytes characterized by narrow perivitelline space and heterogeneous zona pellucida: Is intracytoplasmic sperm injection necessary? Journal of Assisted Reproduction and Genetics, 31(3), 285294. doi: 10.1007/s10815-013-0169-9 CrossRefGoogle ScholarPubMed
Litscher, E. S. and Wassarman, P. M. (2020). Zona pellucida genes and proteins and human fertility. Trends in Developmental Biology, 13, 2133.Google ScholarPubMed
Liu, C., Litscher, E. S., Mortillo, S., Sakai, Y., Kinloch, R. A., Stewart, C. L. and Wassarman, P. M. (1996). Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proceedings of the National Academy of Sciences of the United States of America, 28, 93(11), 54315436. doi: 10.1073/pnas.93.11.5431 CrossRefGoogle Scholar
Lunn, M. O. and Wright, S. J. (2013). Distinct subtypes of zona pellucida morphology reflect canine oocyte viability and cumulus–oocyte complex quality. Theriogenology, 80(5), 498506. doi: 10.1016/j.theriogenology.2013.05.013 CrossRefGoogle ScholarPubMed
Nikiforov, D., Grøndahl, M. L., Hreinsson, J. and Andersen, C. Y. (2022). Human oocyte morphology and outcomes of infertility treatment: A systematic review. Reproductive Sciences, 29(10), 27682785. doi: 10.1007/s43032-021-00723-y CrossRefGoogle ScholarPubMed
Pan, C. and Zhang, H. (2020). Embryological characteristics and clinical outcomes of oocytes with heterogeneous zona pellucida during assisted reproduction treatment: A retrospective study. Medical Science Monitor, 26, e924316. doi: 10.12659/MSM.924316 CrossRefGoogle ScholarPubMed
Rankin, T., Talbot, P., Lee, E. and Dean, J. (1999). Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss. Development, 126(17), 38473855. doi: 10.1242/dev.126.17.3847 CrossRefGoogle ScholarPubMed
Rankin, T. L., O’Brien, M., Lee, E., Wigglesworth, K., Eppig, J. and Dean, J. (2001). Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development, 128(7), 11191126. doi: 10.1242/dev.128.7.1119 CrossRefGoogle ScholarPubMed
Sauerbrun-Cutler, M. T., Vega, M., Breborowicz, A., Gonzales, E., Stein, D., Lederman, M. and Keltz, M. (2015). Oocyte zona pellucida dysmorphology is associated with diminished in-vitro fertilization success. Journal of Ovarian Research, 8, 5. doi: 10.1186/s13048-014-0111-5 CrossRefGoogle ScholarPubMed
Shi, W., Xu, B., Wu, L. M., Jin, R. T., Luan, H. B., Luo, L. H., Zhu, Q., Johansson, L., Liu, Y. S. and Tong, X. H. (2014). Oocytes with a dark zona pellucida demonstrate lower fertilization, implantation and clinical pregnancy rates in IVF/ICSI cycles. PLOS ONE, 9(2), e89409. doi: 10.1371/journal.pone.0089409 CrossRefGoogle ScholarPubMed
Sousa, M., Teixeira da Silva, J., Silva, J., Cunha, M., Viana, P., Oliveira, E., , R., Soares, C., Oliveira, C. and Barros, A. (2015). Embryological, clinical and ultrastructural study of human oocytes presenting indented zona pellucida. Zygote, 23(1), 145157. doi: 10.1017/S0967199413000403 CrossRefGoogle ScholarPubMed
Sun, Y., Zeng, Y., Chen, H., Zhou, Z., Fu, J., Sang, Q., Wang, L., Sun, X., Chen, B. and Xu, C. (2021). A novel homozygous variant in ZP2 causes abnormal zona pellucida formation and female infertility. Journal of Assisted Reproduction and Genetics, 38(5), 12391245. doi: 10.1007/s10815-021-02107-2 CrossRefGoogle ScholarPubMed
Wang, Y., Lv, C., Huang, H. L., Zeng, M. H., Yi, D. J., Tan, H. J., Peng, T. L., Yu, W. X., Deng, H. W. and Xiao, H. M. (2019). Influence of mouse defective zona pellucida in folliculogenesis on apoptosis of granulosa cells and developmental competence of oocytes†. Biology of Reproduction, 101(2), 457465. doi: 10.1093/biolre/ioz093 CrossRefGoogle ScholarPubMed
Wassarman, P. M. and Litscher, E. S. (2021). Zona pellucida genes and proteins: Essential players in mammalian oogenesis and fertility. Genes, 12(8), 1266. doi: 10.3390/genes12081266 CrossRefGoogle ScholarPubMed
Wassarman, P. M., Qi, H. and Litscher, E. S. (1997). Mutant female mice carrying a single mZP3 allele produce eggs with a thin zona pellucida, but reproduce normally. Proceedings of the Royal Society B – Biological Sciences, 264(1380), 323328. doi: 10.1098/rspb.1997.0046 CrossRefGoogle ScholarPubMed
Wei, X., Li, Y., Liu, Q., Liu, W., Yan, X., Zhu, X., Zhou, D., Tian, Y., Zhang, F., Li, N. and Lu, Z. (2022). Mutations in ZP4 are associated with abnormal zona pellucida and female infertility. Journal of Clinical Pathology, 75(3), 201204. doi: 10.1136/jclinpath-2020-207170 CrossRefGoogle ScholarPubMed
Yang, P., Luan, X., Peng, Y., Chen, T., Su, S., Zhang, C., Wang, Z., Cheng, L., Zhang, X., Wang, Y., Chen, Z. J. and Zhao, H. (2017). Novel zona pellucida gene variants identified in patients with oocyte anomalies. Fertility and Sterility, 107(6), 13641369. doi: 10.1016/j.fertnstert.2017.03.029 CrossRefGoogle ScholarPubMed
Yang, D., Yang, H., Yang, B., Wang, K., Zhu, Q., Wang, J., Ding, F., Rao, B., Xue, R., Peng, J., Wang, Q., Cao, Y., Zou, W., Chen, B. and Zhang, Z. (2022). Embryological characteristics of human oocytes with agar-like zona pellucida and its clinical treatment strategy. Frontiers in Endocrinology, 13, 859361. doi: 10.3389/fendo.2022.859361 CrossRefGoogle ScholarPubMed
Zhang, D., Zhu, L., Liu, Z., Ren, X., Yang, X., Li, D., Luo, Y., Peng, X., Zhou, X., Jia, W., Hou, M., Li, Z., Jin, L. and Zhang, X. (2021). A novel mutation in ZP3 causes empty follicle syndrome and abnormal zona pellucida formation. Journal of Assisted Reproduction and Genetics, 38(1), 251259. doi: 10.1007/s10815-020-01995-0 CrossRefGoogle ScholarPubMed
Zhou, Z., Ni, C., Wu, L., Chen, B., Xu, Y., Zhang, Z., Mu, J., Li, B., Yan, Z., Fu, J., Wang, W., Zhao, L., Dong, J., Sun, X., Kuang, Y., Sang, Q. and Wang, L. (2019). Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation. Human Genetics, 138(4), 327337. doi: 10.1007/s00439-019-01990-1 CrossRefGoogle ScholarPubMed