Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T19:42:57.081Z Has data issue: false hasContentIssue false

Genetic-economic aspects of feed efficiency in laying hens

Published online by Cambridge University Press:  18 September 2007

D.K. Flock
Affiliation:
Lohmann Tierzucht GmbH, P.O. Box 460, 27454 Cuxhaven, Germany
Get access

Abstract

Many decades of selection for increased egg output per bird and for efficient feed conversion have resulted in stocks capable of remarkable levels of performance. In the search for new ways to achieve further improvements in egg production efficiency, residual feed intake is seen as a parameter that merits the serious attention of breeders. This review examines relevant research relating to feed conversion efficiency since 1972 – including some results obtained by the author from commercial populations – and offers guidelines on the ways in which datd on individual feed intake could be applied within modern selection programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arboleda, C.R., Harris, D.L. and Nordskog, A.W. (1976) Efficiency of selection in layer-type chickens by using supplementary information on feed consumption. Theoretical and Applied genetics 48: 6773, 7583CrossRefGoogle ScholarPubMed
Arthur, J. (1986) An evaluation of industry breeding programs for egg-type chickens. Proceedings of the World Congress on Genetics Applied to Livestock Production X: 325–336Google Scholar
Balnave, D., Farrell, D.J. and Cumming, R.B. (1978) The minimum metabolizable energy requirement of laying hens. World's Poultry Science Journal 34: 149154CrossRefGoogle Scholar
Bell, D. (1998) An A + performing layer flock. Technical Newsletter for Egg Producers. The Ontario Egg Producers' Marketing Board, JanuaryGoogle Scholar
Bentsen, H.B. (1983) Genetic variation in feed efficiency of laying hens at constant bodyweight and egg production. Acta Agriculture Scandinavica 33: 289302; 305319CrossRefGoogle Scholar
Boichard, M., Bordas, A. and Merat, P. (1990) Responses for residual feed intake in two Rhode Island Red strains. Proceedings of 6th International Poultry Breeders Conference,Auchincruive,Scotland pp. 21–42Google Scholar
Bordas, A. and Mérat, P. (1974) Variabilité génétique et corrélations phénotvpiques caractérisant la consummation alimentaire de ponies pondeuses apres correction pour le poids corporel et la ponte. Annales Génétique Sélection Animale 6: 369379CrossRefGoogle Scholar
Bordas, A. and Merat, P. (1981) Genetic variation and phenotypic correlations of food Consumption of laying hens corrected for body weight and production. British Poultry Science, 22: 2533CrossRefGoogle ScholarPubMed
Bordas, A. and Mérat, P. (1984) Correlated responses in a selection experiment on residual feed intake of adult Rhode-Island red cocks and hens. Proceedings of 6th WPSA Congress,Helsinki Vol 23, 233–237Google Scholar
Bordas, A. and Mérat, P. (1991) Sélection divergente pour la consummation alimentaire résiduelle de la poule en période de ponte: réponse an taux protéique de l'aliment. Génétique Sélection Evolution 23: 249256CrossRefGoogle Scholar
Bordas, A. and Minvielle, F. (1997) Réponse à la chaleur de poules pondeuses issues de lignées sélectionnées pour une faible (R–) on forte (R–) consummation alimentaire résiduelle. Génétique Selection Evolution 29: 279290CrossRefGoogle Scholar
Bordas, A., Mérat, P., Coquerelle, G. and No'e, J.P. (1995) Influence d'un aliment dilué sur des lignes de poules pondeuses sélectionnées sur la consummation alimentaire résiduelle. Génétique Sélection Evolution 27: 299304CrossRefGoogle Scholar
Bordas, A., Mérat, P. and Minvielle, F. (1996) Heterosis in egg-laying lines under divergent selection for residual feed consumption. Poultry Science 75: 2024CrossRefGoogle ScholarPubMed
Bordas, A., Tixier-Boichard, M. and Merat, P. (1992) Direct and correlated responses to divergent selection for residual food intake in Rhode Island Red laying hens. British Poultry Science, 33: 741754CrossRefGoogle ScholarPubMed
Braastad, B.O. and Katle, J. (1989) Behavioural differences between laying hen populations selected for high and low efficiency of food utilisation. British Poultry Science 30: 533544CrossRefGoogle ScholarPubMed
Brenøe, U.T. (1995) Studies on food efficiency in hybrids and strains of laying hens. Dissertation, Agricultural University of NorwayGoogle Scholar
Brenøe, U.T. (1996) Food efficiency in pure strains and hybrids of laying hens analysed in a diallele cross. I. Effect of total heterosis on important trails. Acta Agricultura Scandinavica Section A, Animal Science 46: 137143Google Scholar
Byerly, T.C., Kessler, J.W., Gous, R.M. and Thomas, O.P. (1980) Feed requirements for eggproduction. Poultry Science 59: 25002507CrossRefGoogle Scholar
Clayton, G.L. (1978) Genetics in the poultry industry? World's Poultry Science journal 34: 205208CrossRefGoogle Scholar
Damme, K. (1984) Genetische and phänotypische Beziehungen zwischen Produktionsmerkmalen und dem Energiestoffwechsel von Legehennen. Dissertation Technisch Universität, MunichWeihenstephanGoogle Scholar
Damme, K. (1993) Bedarfsgerechte Fütterung von Legehennen Deutsche Geflugelwirtschaft 46: 69Google Scholar
Fairfull, R.W. and Chambers, J.R. (1984) Breeding for efficiency: poultry. Canadian Journal of Animal Science 64: 513527CrossRefGoogle Scholar
Fairfull, R.W. and Gowe, R.S. (1979) Feed consumption and feed efficiency in selected and control strains of egg stocks under long term selection for a complex of economic traits. In: Selection Experiments in Laboratory and Domestic Animals (Ed. Robertson, A.), Commonwealth Agricultural Bureaux, 230245Google Scholar
Flock, D.K. (1983) Optimierung der 'utteraufnahme bei Legehennen als Zuchtziel. Proceedings of LTE Symposium,CuxhavenGoogle Scholar
Flock, D.K. and Preisinger, R. (1997) Commercial breeding of egg-type chickens to maximize egg income over feed cost. Proceedings of National Breeders' Roundlable,St Louis, USA, 1–2 May pp. 63–81Google Scholar
ft3French, H.L. and Nordskog, A.W. (1971) Feed conversion of dwarf chickens compared to normal small-bodied chickens (abstract). Poultry Science 50: 1577Google Scholar
Hagger, C. (1977) Untersuchungen zur Futterverwertung von Legehennen. 1. Teil: Phäno-typische Beziehungen. Archiva Geflügelkunde 41: 266270Google Scholar
Hagger, C. (1978) Untersuchungen zur Futterverwertung von Legehennen. 2. Teil: GenetischeParameter. Archiv Geflügelkunde 42: 1015Google Scholar
Hagger, C. (1991) Phenotypic and genetic effects on feed intake of laying hens in different years. Poultry Science 70: 434439CrossRefGoogle ScholarPubMed
Hagger, C. (1992) Two generations of selection on restricted best linear unbiased prediction breeding values for income minus feed cost in laying hens. Journal of Animal Science 70: 20452052CrossRefGoogle Scholar
Hagger, C. and Abplanalp, H. (1978) Food consumption records for the genetic improvement of income over food costs in laying flocks of White Leghorns. British Poultry Science 19: 651667CrossRefGoogle Scholar
Hagger, C. and Steiger-Stafl, D. (1991) Correlated responses from selection for income minus food cost in pullets on traits in older hens. British Poultry Science 32: 971979CrossRefGoogle Scholar
Hartmann, W. and Heil, G. (1992) Amtliche Legeleistungsprüfung 1990/91: Zusammenfassende Auswertung. Deutsche Geflugelwirtschaft and Schweineproduktion 8/92: 219229Google Scholar
Heil, G. (1976) Schätzung der genetischen Parameter für die Futterverwertung von Legehennen in Gruppenkafigen and ihre Beziehungen zu anderen Leistungs- and Eiqualitätsmerkmalen. Dissertation, Technische Universität, Munich-WeihenstephanGoogle Scholar
Heil, G. and Hartmann, W. (1980) Feed wastage in strains of crossbred hens from Leghorn lines selected for egg production and feed efficiency. Proceedings of 6th European Poultry Conference,Hamburg, Vol. 2, pp. 147–155Google Scholar
Heil, G. and Hartmann, W. (1997) Amtliche Legeleistungsprüfung 1995/96: Zusammenfassende Auswertung. Deutsche Geflugelwirtschaft and Schweineproduktion 36: 1222Google Scholar
Hughes, B.O. (1980) Feather damage in hens caged individually. British Poultry Science 21:149154CrossRefGoogle ScholarPubMed
Hurnik, J.F., Summers, J.D., Walker, J.P. and Szkotnicki, W. (1977) Production traits influencing the individual feed conversion ratio. Poultry Science 56: 912917CrossRefGoogle Scholar
Katle, J. (1991a) Selection for efficiency of food utilization in laying hens: direct response in residual food consumption and correlated responses in weight gain, egg production and body weight. British Poultry Science 32: 939953CrossRefGoogle Scholar
Katle, J. (1991b) Selection for efficiency of food utilisation in laying hens: causal factors for variation in residual food consumption. British Poultry Science 32: 955969CrossRefGoogle Scholar
Katle, J. (1992) Genetic and economic consequences of including residual food consumption in a multi-trait selection program for laying hens. Animal Science 42: 6370Google Scholar
Katle, J. (1994) Optimisation of a breeding program for layers, including individual food consumption of cocks. Proceedings of 9th European Poultry Conference,Glasgow, Vol. 2, pp. 248–251Google Scholar
Katle, J. and Kolstad, N. (1991) Selection for efficiency of food utilisation in laying hens: direct response in residual food consumption and correlated responses in weight gain, egg production and body weight. British Poultry Science 32: 939953CrossRefGoogle Scholar
Kennedy, B.W., Van Der Werf, H.J. and Meuwissen, T.H.E. (1993) Genetic and statistical properties of residual feed intake Journal of Animal Science 71: 32393250CrossRefGoogle ScholarPubMed
Koerhuis, A.N.M. and Hill, W.G. (1996) Predicted response in food conversion ratio for growth by selection on the ratio or on linear component traits, in a (sequential) selection programme. British Poultry Science 37: 318327CrossRefGoogle ScholarPubMed
Leeson, S., Lewis, D. and Shrimpton, D.H. (1973) Multiple linear regression equations for the prediction of food intake in the laying fowl. British Poultry Science 14: 595608CrossRefGoogle ScholarPubMed
Luiting, P. (1991) The value of feed consumption data for breeding in laying hens. PhD Thesis, WageningenGoogle Scholar
Luiting, P. (1992) Restfutterverzehr bei Legehennen. Lohmann Information 1992; 1: 1521Google Scholar
Luiting, P. and Urff, E.M. (1991a) Optimization of a model to estimate residual feed consumption in the laying hen. Livestock Production Science 27: 321338CrossRefGoogle Scholar
Luiting, P. and Urff, E.M. (1991b) Residual feed consumption in laying hens. 1. Quantification of phenotypic variation and repeatabilities. Poultry Science 70: 16551662CrossRefGoogle ScholarPubMed
Luiting, P. and Urff, E.M. (1991c) Residual feed consumption in laying hens. 2. Genetic variation and correlations. Poultry Science 70: 16631672CrossRefGoogle ScholarPubMed
Luiting, P., Schrama, J.W., Van Der Hel, W. and Urff, E.M. (1991) Metabolic differences between white leghorns selected for high and low residual food consumption. British Poultry Science 32: 763782CrossRefGoogle ScholarPubMed
Marguerat-König, C. (1988) Selektionsversuch auf wirtschaftlich gewichtete Merkmale-Eierlös minus Futterkosten-beim Huhn. Dissertation, Eidgenassische Technische Hochschule, ZürichGoogle Scholar
McDonald, M.W. (1978) Feed intake of laying hens. World's Poultry Science Journal 34: 209221CrossRefGoogle Scholar
Mielenz, N., Groeneveld, E., Müller, J. and Spilke, J. (1994) Simultaneous estimation of variances and covariances using REML and Henderson 3 in a selected population of white leghorns. British Poultry Science 35: 669676CrossRefGoogle Scholar
Nordskog, A.W. (1975) Some limitations on the quantitative genetics approach to poultry improvement. Proceedings of National Poultry Breeders' Roundtable,Kansas CityGoogle Scholar
Nordskog, A.W., French, H.L., Arboleda, C.R. and Casey, D.W. (1972) Breeding for efficiency of egg production. World's Poultry Science Journal 28: 175188CrossRefGoogle Scholar
Pirchner, F. (1985) Genetics of efficiency of food conversion for egg production. In: Poultry Genetics and Breeding (Eds Hill, W.G., Manson, J.M., Hewitt, D.), pp. 169178Google Scholar
Rapp, K.G. (1970) Die Wirtschaftlichkeit einer Zwerg-Mutante der weiDen Leghorn in der Linien-und Hybridzucht. Dissertation, Georg-August Universität, GöttingenGoogle Scholar
Sabri, H.M., Wilcox, C.J., Wilson, H.R. and Harms, R.H. (1991a) Measurements of genetic variation in residual metabolizable energy intake of laying hens. Poultry Science 70: 222228CrossRefGoogle ScholarPubMed
Sabri, H.M., Wilson, H.R., Wilcox, C.J. and Harms, R.H. (1991b) Comparison of energy utilization efficiency among six lines of White Leghorns. Poultry Science 70: 229233CrossRefGoogle ScholarPubMed
Schild, H.J. (1983) Genetische Parameter von Leistungs-and Eiqualitätsmerkmalen von Legehennen in der zweiten Legeperiode. Dissertation, Technische Universität, Munich-WeihenstephanGoogle Scholar
Schulman, N., Tuiskula-Haavisto, M., Siitonen, L. and Mantysaari, E.A. (1994) Genetic variation of residual feed consumption in a selected Finnish egg-layer population. Poultry Science 73: 14791484CrossRefGoogle Scholar
Stappers, H.P. (1992) Erfolgreiche Legehennhaltung in Holland: Futterrezepturgestaltung, Fijtterung and Management. Lohmann Information 1: 2326Google Scholar
Tauson, R. (1979) Feed waste by caged layers. 1. A method of estimating the technical feed waste in different cages and feeding systems. Swedish Journal of Agricultural Research 9: 8393Google Scholar
Tauson, R. and Svensson, S.A. (1980) Influence of plumage condition on the hen's feed requirement. Swedish Journal of Agricultural Research 10: 3539Google Scholar
Tixier-Boichard, M., Boichard, D., Groeneveld, E. and Bordas, A. (1995) Restricted maximum likelihood estimates of genetic parameters of adult male and female Rhode Island red chickens divergently selected for residual feed consumption. Poultry Science 74: 12451252CrossRefGoogle ScholarPubMed
Tullet, S.G., Macleod, M.G. and Jewitt, T.R. (1980) The effects of partial defeathering on energy metabolism in the laying fowl. British Poultry Science 21: 241245CrossRefGoogle Scholar
Von Krosigk, C.M. and Pirchner, F. (1964) Genetic relationship between feed consumption and productive traits in laying hens. Proceedings of British Poultry Breeders' Roundtable,CheltenhamGoogle Scholar
Wang, A.G. (1990) Selektionsversuch auf Futterverwertung bei Legehennen unter Rekurrenter Reziproker Selektion. Dissertation, Universität SalzburgGoogle Scholar
Wang, A.G. and Pirchner, F. (1992) Schätzung der genetischen Parameter für Futterverwertung bei Reinzucht-and Kreuzungshennen. Archiv Geflügelkhinde 2: 5862Google Scholar
Willeke, H. (1980) Correlated response of a selection on feed conversion on the egg components. Proceedings of 6th European Poultry Conference,Hamburg, Vol. 2, 156–161Google Scholar
Wing, T.L. and Nordskog, A.W. (1982) Use of individual feed records in a selection program for eggproduction efficiency. I. Heritability of the residual component of feed efficiency. Poultry Science 61: 226230CrossRefGoogle Scholar