Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-02T18:22:35.693Z Has data issue: false hasContentIssue false

On the application of the EM-imaging for chipless RFID tags

Published online by Cambridge University Press:  01 October 2015

M. Zomorrodi*
Affiliation:
Monash University, Clayton Campus, Wellington Road, Clayton, Melbourne, VIC 3800, Australia. Phone: +61415524457
N.C. Karmakar
Affiliation:
Monash University, Clayton Campus, Wellington Road, Clayton, Melbourne, VIC 3800, Australia. Phone: +61415524457
*
Corresponding author: M. Zomorrodi Email: mohammad.zomorrodi@monash.edu
Get access

Abstract

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2 in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.

Type
Chipless RFID
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Arendarenko, E.: A study of comparing RFID and 2D barcode tag technologies for pervasive mobile applications, Master, Department of Computer Science and Statistics, University of Joensuu, 2009.Google Scholar
[2] White, G.; Gardiner, G.; Prabhakar, G.P.; Razak, A.: A comparison of barcoding and RFID technologies in practice. J. Inf., Inf. Technol. Org., 2 (2007), 119132.Google Scholar
[3] Turcu, C.: Radio Frequency Identification Fundamentals and Applications, Bringing Research to Practice: Intech, Croatia, 2010.Google Scholar
[4] Preradovic, S.; Karmakar, I.B.N.: RFID transponders. IEEE Microw. Mag., 9 (2008), 90103.CrossRefGoogle Scholar
[5] SkyRFID. RFID Active Readers 433 MHz. (2015). http://skyrfid.com/Readers_UHF_433.php Google Scholar
[6] Insider, R.: Active RFID versus Passive RFID: What's the Difference?. (2013). http://blog.atlasrfidstore.com/active-rfid-vs-passive-rfid Google Scholar
[8] Preradovic, S.; Karmakar, N.: Chipless RFID, bar code of the future. IEEE Microw. Mag., 11 (2010), 8797.CrossRefGoogle Scholar
[9] Lu, F.; Feng, Q.; Li, S.: A novel CPW-fed bow-tie slot antenna for 5.8 GHz RFID tags, in Progress, in Electromagnetics Research Symp., Cambridge, USA, 2008.Google Scholar
[10] Aminul Islam, Md.; Karmakar, N.C.: A novel compact printable dual-polarized chipless RFID system. IEEE Trans. Microw. Theory Tech., 60 (2012), 21422151.CrossRefGoogle Scholar
[11] Kalansuriya, P.; Karmakar, N.C.; Viterbo, E.: On the detection of frequency-spectra-based chipless RFID using UWB impulsed interrogation. IEEE Trans. Microw. Theory Tech., 60 (2012), 41874197.CrossRefGoogle Scholar
[12] Preradovic, S.: Chipless RFID System for Barcode Replacement, PhD, ECSE, Monash University, 2009.Google Scholar
[14] Harrop, P.; Das, R.: Printed and Chipless RFID Forecasts, Technologies & Players 2009–2029, IDTechEx, USA, 2009.Google Scholar
[15] Turcu, C.: Current Trends and Challenges in RFID: InTech, 2011.CrossRefGoogle Scholar
[16] Zomorrodi, M.; Karmakar, N.: Image-based chipless RFID system with high content capacity for low cost tagging, in the Int. Microwave and RF Conf. (IMaRC) Bangalore, India, 2014, 4144.CrossRefGoogle Scholar
[17] Zomorrodi, M.; Karmakar, N.C.: Cross-RCS based, high data capacity, chipless RFID system, in Int. Microwave Symp. (IMS-2014), Tampa Bay, Flordia, USA, 2014, 14.CrossRefGoogle Scholar
[18] Bhuiyan, M.S.; Azim, R.E.; Karmakar, N.: A novel frequency reused based ID generation circuit for chipless RFID applications, in Asia-Pacific Microwave Conf. (APMC), Melbourne, Australia, 2011, 14701473.Google Scholar
[19] Balbin, I.; Karmakar, N.C.: Phase-encoded chipless RFID transponder for large-scale low-cost applications. IEEE Microw. Wireless Compon. Lett., 19 (2009), 509511.CrossRefGoogle Scholar
[20] Ramos, A.; Lazaro, A.; Girbau, D.; Villarino, R.: Time-domain measurement of time-coded UWB chipless RFID tags. Progress Electromagn. Res., 116 (2011), 313331.CrossRefGoogle Scholar
[21] Lu, Z.; Rodriguez, S.; Tenhunen, H.; Li-Rong, Z.: An Innovative Fully Printable RFID Technology Based on High Speed Time-domain Reflections, in High Density Microsystem Design and Packaging and Component Failure Analysis, 2006, 166170.Google Scholar
[22] Plessky, V.P.; Reindl, L.M.: Review on SAW RFID tags. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 (2010), 1423.CrossRefGoogle ScholarPubMed
[23] Preradovic, S.; Balbin, I.; Karmakar, N.C.; Swiegers, G.: Chipless Frequency Signature Based RFID Transponders, in 1st European Wireless Technology Conf., Amsterdam, 2008, 302305.CrossRefGoogle Scholar
[24] Girbau, D.; Lorenzo, J.; Lázaro, A.; Ferrater, C.; Villarino, R.: Frequency-coded chipless RFID tag based on dual-band resonators. IEEE Antennas Wireless Propag. Lett., 11 (2012), 126128.CrossRefGoogle Scholar
[25] Preradovic, S.; Balbin, I.; Karmakar, N.C.; Swiegers, G.F.: Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans. Microw. Theory Tech., 57 (2009), 14111419.CrossRefGoogle Scholar
[26] Azim, R.E.; Karmakar, N.C.; Roy, S.M.; Yerramilli, R.; Swiegers, G.: Printed chipless RFID tags for flexible low-cost substrates, in Chipless and Conventional Radio Frequency Identification: Systems for Ubiquitous Tagging, ed Hoboken, USA: IGI Global, 2012, 175195.Google Scholar
[27] Amin, E.Md.; Bhuiyan, Md.S.; Karmakar, N.C.; Winther-Jensen, B.: Development of a low cost printable chipless RFID humidity sensor. IEEE Sens. J., 14 (2014), 140149.CrossRefGoogle Scholar
[28] Soumekh, M.: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. USA: John Wily and Sons, 1999.Google Scholar
[29] Zomorrodi, M.; Karmakar, N.C.; Bansal, S.G.: Introduction of electromagnetic image-based chipless RFID system in intelligent sensors, sensor networks and information processing, in ISSNIP-2013. Melbourne, 2013, 443448.CrossRefGoogle Scholar
[30] Singh, T.; Tedjini, S.; Perret, E.; Vena, A.: A frequency signature based method for the RF identification of letters, in 2011 IEEE Int. Conf. on RFID, 2011, 15.CrossRefGoogle Scholar
[31] Blischack, A.T.; Manteghi, M.: Embeded singularity chipless RFID tags. IEEE Trans. Antenna Propag., 59 (2011), 39613968.CrossRefGoogle Scholar
[32] ITU. Radio Regulation. Geneva: ITU, 2012.Google Scholar
[33] ITU-R. Rec. p 676–9, Attenuation by Atmospheric Gases, Int. Telecommunication Union, Geneva, 2012.Google Scholar
[34] ACMA. 60 GHz Band, Millimetre Wave Technology, 2004.Google Scholar
[35] Yong, S.K.; Xia, P.; Garcia, A.V.: 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice: John Wiley & Sons, UK, 2010.CrossRefGoogle Scholar
[36] Koh, C.: The Benefits of 60 GHz Unlicensed Wireless Communications, YDI Company, USA.Google Scholar
[37] Guo, N.; Qiu, R.C.; Mo, Sh.S.; Takahashi, K.: 60-GHz millimeter-wave radio: principle, technology, and new results. EURASIP J. Wireless Commun. Netw., 2007, 19.Google Scholar
[38] Buchar, W.; Karmakar, N.; Zomorrodi, M.: MIMO-Based Technique for Chipless RFID EM-Imaging at 60 GHz, Grant proposal Xerox, USA, 2014.Google Scholar
[39] Zomorrodi, M.; Karmakar, N.C.: On the usage of diffraction effect for chipless RFID systems, in Australian Microwave Symp. (AMS), Melbourne, Australia, 2014, 4142.CrossRefGoogle Scholar
[40] Zomorrodi, M.; Karmakar, N.C.: Cross-Polarized Printable Chipless RFID Tag with Superior Data Capacity, in European microwave week, Rome, Italy, EuMW2014, 2014.Google Scholar
[41] Zomorrodi, M.; Karmakar, N.C.: An array of printed dipoles at 60 GHz in IEEE Int. Symp. on Antennas and Propagation, Memphis, Tennessee, USA, 2014, 7374.CrossRefGoogle Scholar
[42] Sebastian, K.; Robert, B.; Ming-Shih, H.; Martin, V.: A Concept for Infrastructure Independent Localization and Augmented Reality Visualization of RFID Tags, presented at the Int. Microwave Workshop on Wireless Sensing, Crotia, 2009.Google Scholar
[43] K. Tomiyasu. Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface, Proceedings of the IEEE, vol. 66, 1978, 563583.CrossRefGoogle Scholar
[44] Zomorrodi, M.; Karmakar, N.C.: Novel MIMO-based technique for EM-imaging of chipless RFID, in Int. Microwave Symp. (IMS-2015), Phoneix, 2015.CrossRefGoogle Scholar
[45] Vena, A.; Perret, E.; Tedjni, D.S.: A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system. IEEE Transactions on Microw. Theroy Tech., 61 (2013), 29822995.CrossRefGoogle Scholar
[46] Balanis, C.A.: Antenna Theory Analysis and Design, 3rd ed., John Wiley&Sons, Hoboken, New Jersey, 2005.Google Scholar
[47] Siden, J.; Jonsson, P.; Olsson, T.; Wang, G.: Performance Degradation of RFID System Due to the Distortion in RFID Tag Antenna, in Microwave and Telecommunication Technology, Sevastopol, Ukraine, 2001, 371373.Google Scholar
[48] Carrara, W.; Goodman, R.; Majewski, R.: Spotlight Synthetic Aperture Radar Signal Processing Algorithm. Boston: Artesch House, 1995.Google Scholar
[49] Charvat, G.L.: A Low-Power Radar Imaging System: Michigan State University, 2007.Google Scholar