Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T18:21:38.512Z Has data issue: false hasContentIssue false

Yellow Nutsedge (Cyperus esculentus) Control with Reduced Rates of Dimethyl Disulfide in Combination with Totally Impermeable Film

Published online by Cambridge University Press:  20 January 2017

Theodore McAvoy
Affiliation:
Department of Horticulture, Virginia Tech University, Eastern Shore Agricultural Research and Extension Center, Painter, VA 23420
Joshua H. Freeman*
Affiliation:
Department of Horticulture, Virginia Tech University, Eastern Shore Agricultural Research and Extension Center, Painter, VA 23420
*
Corresponding author's E-mail address: joshfree@vt.edu

Abstract

Methyl bromide (MBr) was widely used as a soil fumigant to manage pests in the planting bed prior to transplanting fresh market tomato; however, it has been banned by the United Nations Environment Programme. Alternatives to MBr must be implemented to sustain productivity in fresh market tomato. Dimethyl disulfide plus chloropicrin (DMDS : Pic) is a fumigant alternative to methyl bromide for the management of yellow nutsedge and other soil-borne pests in tomato. Fumigant costs, environmental concerns, and risk mitigation measures encourage reduced fumigant application rates. Virtually impermeable film (VIF) and totally impermeable film (TIF) provide greater fumigant retention than low density and high density polyethylene film, VIF and TIF can allow for reduced fumigant application rates while maintaining fumigant efficacy. The objectives of this research were to evaluate TIF with reduced rates of shank-applied DMDS : Pic (79 : 21 w/w) for the control of yellow nutsedge in tomato. Treatments included a standard rate of DMDS : Pic (468 L ha−1) under VIF and TIF, a high rate (561 L ha−1) under VIF, three reduced rates (187 L ha−1, 281 L ha−1, and 374 L ha−1) under TIF, and a nontreated control under TIF and VIF. Results indicated rates may be reduced from a standard 468 L ha−1 under VIF to 187 L ha−1 (67% reduction) under TIF while maintaining yellow nutsedge control and tomato yields. In addition, the results indicated that nontreated TIF managed yellow nutsedge better than nontreated VIF because of decreased penetration of the mulch by yellow nutsedge.

Methyl bromide (MBr) fue ampliamente usado como fumigante de suelo para manejar plagas en las camas de siembra previamente al trasplante de tomate para el mercado fresco. Sin embargo, este fumigante fue prohibido por el Programa para el Ambiente de las Naciones Unidas. Alternativas a MBr deben ser implementadas para mantener la productividad del tomate para mercado fresco. Dimethyl disulfide más chloropicrin (DMDS:Pic) es un fumigante alternativo a methyl bromide para el manejo de Cyperus esculentus y otras plagas de suelo del tomate. Los costos de fumigación, las preocupaciones ambientales, y las medidas de mitigación de riesgo promueven el uso de dosis reducidas en aplicaciones de fumigante. Coberturas plásticas con películas virtualmente impermeables (VIF) y totalmente impermeables (TIF) brindan mayor retención del fumigante que coberturas de polyethylene de baja y alta densidad, lo que permitiría el uso de dosis reducidas de fumigante al tiempo que se mantendría la eficacia del fumigante. Los objetivos de esta investigación fueron evaluar TIF con dosis reducidas de DMDS:Pic (79:21 w/w) aplicadas con inyector de cincel para el control de C. esculentus en tomate. Los tratamientos incluyeron una dosis estándar de DMDS:Pic (468 L ha−1) bajo VIF y TIF, una dosis alta (561 L ha−1) bajo VIF, tres dosis reducidas (187 L ha−1, 281 L ha−1, y 371 L ha−1) bajo TIF, y un testigo sin tratamiento bajo TIF y VIF. Los resultados indicaron que las dosis pueden ser reducidas de 468 L ha−1 a 187 L ha−1 (una reducción del 67%) bajo TIF al tiempo que se mantienen el control de C. esculentus y el rendimiento del tomate. Adicionalmente, los resultados indicaron que en los testigos sin fumigación, el TIF controló mejor C. esculentus que VIF debido a una menor penetración de la maleza a través de la cobertura.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2012. Paladin label. http://www.upi-usa.com/Paladin/pdf/PALDN_DFU_55050-4_3822CR1.pdf. Accessed: March 12, 2012.Google Scholar
Buker, R. S. III, Stall, W. M., Olson, S. M., and Schilling, D. G. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with direct-seeded and transplanted watermelon (Citrullus lanatus). Weed Technol. 17:751754.Google Scholar
Chase, C. A., Sinclair, T. R., Shilling, D. G., Gilreath, J. P., and Locascio, S. J. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci. 46:575580.Google Scholar
Chellemi, D. O., Ajwa, H. A., Sullivan, D. A., Alessandro, R., Gilreath, J. P., and Yates, S. R. 2011. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the Southeastern United States. J. Environ. Qual. 40:12041214.Google Scholar
Chow, E. 2009. An update on the development of TIF mulching films. Proc. 2009 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://www.mbao.org/2009/Proceedings/050ChowEMBAO2009.pdf. Accessed: January 18, 2012.Google Scholar
Culpepper, S., Sosnoskie, L., Rucker, K., Tankersley, B., Langston, D., Webster, T., and Upchurch, W. 2008. DMDS or the 3-way: which is more effective in Georgia? Proc. 2008 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. mbao.org/2008/Proceedings/007CulpepperSMB2008conferencesummary.pdf. Accessed December 11, 2011.Google Scholar
Daugovish, O. and Mochizuki, M. J. 2010. Barriers prevent emergence of yellow nutsedge (Cyperus esculentus) in annual plasticulture strawberry (Fragaria x ananassa). Weed Technol. 24:478482.Google Scholar
Fennimore, S. A. and Ajwa, H. A. 2011. Totally impermeable film retains fumigants, allowing lower application rates in strawberry. California Agric. 65:211215.Google Scholar
Gamliel, A., Grinstein, A., Klein, L., Cohen, Y., and Katan, J. 1998. Permeability of plastic films to methyl bromide: field study. Crop Prot. 17:241248.Google Scholar
Gao, S., Hanson, B. D., Wang, D., Browne, G. T., Qin, R., Ajwa, H. A., and Yates, S. R. 2011. Methods evaluated to minimize emissions from preplant soil fumigation. California Agric. 65:4146.Google Scholar
Gilreath, J. P., Jones, J. P., Overman, A. J. 1994. Soilborne pest control in mulched tomato with alternatives to methyl bromide. Proc. Fl. State Hort. Soc. 107:156159.Google Scholar
Gilreath, J. P., Motis, T. N., and Santos, B. M. 2005. Cyperus spp. control with reduced methyl bromide plus chloropicrin doses under virtually impermeable films in pepper. Crop Prot. 24:285287.Google Scholar
Hamill, J. E., Thomas, J. E., Ou, L.-T., Allen, L. H. Jr., Kokalis-Burelle, N., and Dickson, D. W. 2008. Effects of reduced rates of Telone C35 and methyl bromide in conjunction with virtually impermeable film on weeds and root-knot nematodes. Nematropica. 38:3746.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. Distrubution and biology. Pages 125133 in The World's Worst Weeds. Malabar, FL Krieger.Google Scholar
Johnson, W. C. III, and Mullinix, B. G. Jr. 1999. Cyperus esculentus interference in Cucumis sativus . Weed Sci. 47:327331.Google Scholar
Lembright, H. W., 1990. Soil fumigation: principles and application technology. Supplement to J. Nemat. 22:632644.Google Scholar
Minuto, A., Gilardi, G., Gullino, M. L., and Garibaldi, A. 1999. Reduced dosages of methyl bromide applied under gas-impermeable plastic films for controlling soilborne pathogens of vegetable crops. Crop Prot. 18:365371.Google Scholar
Motis, T. N., Locascio, S. J., Gilreath, J. P., and Stall, W.M. 2003. Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technol. 17:543549.Google Scholar
Munnecke, D. E. and Van Gundy, S. D. 1979. Movement of fumigants in soil, dosage responses, and differential effects. Ann. Rev. Phytopathol. 17:405429.Google Scholar
Noling, J. W., 2002. Reducing methyl bromide field application rates with plastic mulch technology. EDIS Publication ENY-046. At http://edis.ifas.ufl.edu. Accessed April 11, 2012.Google Scholar
Olson, S. M. and Rich, J. 2007. Efficacy of Paladin (DMDS) as a soil fumigant for tomato and cantaloupe production. Proc. 2007 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. Available at: http://mbao.org/2007/Proceedings/068OlsonSPaladintomato2007.pdf. Accessed: December 12, 2011.Google Scholar
Ou, L-T, Thomas, J. E., Allen, L. H., Vu, J. C., and Dickson, D. W. 2007. Emissions and distribution of MBr in field beds applied at two rates and covered with two types of plastic mulches. J. Environ. Sci. Health. 42:1520.Google Scholar
Qian, Y., Kamel, A., Stafford, C., Nguyen, T., Chism, W. J., Dawson, J., and Smith, C. W. 2011. Evaluation of the permeability of agricultural films to various fumigants. J. Environ. Sci. Tech. 45:97119718.Google Scholar
Qin, R., Gao, S., Ajwa, H., Sullivan, D., Wang, D., and Hanson, B. D. 2011. Field evaluation of a new plastic film (Vapor Safe) to reduce fumigant emissions and improve distribution in soil. J. Environ. Qual. 40:11951203.Google Scholar
Santos, B. M., Gilreath, J. P., Motis, T. N., von Hulten, M., and Siham, M. N. 2006. Effects of mulch types and concentrations of 1, 3-dichloropropene plus chloropicrin on fumigant retention and nutsedge control. HortTechnology. 16:637640.Google Scholar
Santos, B. M., Gilreath, J. P., Esmel, C. E., and Siham, M. N. 2007a. Effects of yellow and purple nutsedge time of establishment on their distance of influence on bell pepper. HortTechnology. 17:305307.Google Scholar
Santos, B. M., Gilreath, J. P., and Siham, M. N. 2007b. Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology. 17:308311.Google Scholar
Stall, W. M. and Morales-Payan, J. P. 2003. The critical period of nutsedge interference in tomato. UF/IFAS. http://hendry.ifas.ufl.edu/index_marchapril2000.htm#The%20Critical%20Period%20of%20Nutsedge. Accessed: January 20, 2012.Google Scholar
(UNEP) United Nations Environment Programme. 2006. Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer. 7th ed. Section 1.1. Article 2H: Methyl bromide. http://ozone.unep.org/Publications/MP_Handbook/Section_1.1_The_Montreal_Protocol/Article_2H.shtml. Accessed: November 7, 2011.Google Scholar
USDA, 1991. United States Standards for Grades of Fresh Tomato. Pages 114 in U.S. Dep. Agric., Agric. MarketingServ. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050331. Accessed: December 9, 2011.Google Scholar
Wang, D., Yates, S. R., and Jury, W. A. 1998. Temperature effect on methyl bromide volatilization: permeability of plastic cover films. J. Environ. Qual. 27, 821827.Google Scholar
Webster, T. M. 2006. Weed survey – southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59:260277.Google Scholar
Welker, R. M., Louws, F. J., and Driver, J. G. 2006. Acrolein and DMDS as methyl bromide alternatives in tomatoes. Proc. 2006 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. http://mbao.org/2006/06Proceedings/027welker.pdf. Accessed: February 14, 2012.Google Scholar
Wilson, H. P., Kuhar, T. P., Rideout, S. L., Freeman, J. H., Reiter, M. S., Straw, R. A., Hines, T. E., Waldenmaier, C. M., Doughty, H. B., and Deitch, U. T. 2010. Virginia commercial vegetable production recommendations for 2012. Virginia Cooperative Extension. Publication 456-420.Google Scholar
Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing fumigant emissions after soil application. Phytopathology. 92:13441348.Google Scholar