Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T22:26:19.844Z Has data issue: false hasContentIssue false

Wide Row Spacing and Rigid Ryegrass (Lolium rigidum) Competition Can Decrease Barley Yield

Published online by Cambridge University Press:  20 January 2017

Blakely H. Paynter*
Affiliation:
Department of Agriculture and Food, Western Australia, Centre for Cropping Systems, P.O. Box 483, Northam WA 6401
*
Corresponding author's E-mail: blakely.paynter@agric.wa.gov.au.

Abstract

Field studies compared the grain yield of four two-row spring barley cultivars at four sites when sown at two-row spacing in competition with two densities of rigid ryegrass. The sites chosen had low background populations of rigid ryegrass. Although the four cultivars sown differed in their grain yield, row spacing did not influence cultivar performance. Doubling the row spacing decreased barley grain yield at three of the four sites. The impact of row spacing on grain yield was more noticeable when doubled to 48 or 50 cm compared with 36 cm. Rigid ryegrass competition reduced barley grain yield at two of the four sites. At both locations the influence of weed competition on barley grain yield was the same at both narrow and wide row spacing and at one location the impact of weed competition was modified by cultivar. Planting barley in wide rows was found to favor rigid ryegrass production through an increase in both rigid ryegrass biomass production and tiller number. The development of farming systems for barley on the basis of a row spacing greater than 25 cm is likely to be associated with an increase in weed productivity unless good integrated weed management principles are implemented. Modifications to the current system may allow an increase in row spacing without any yield loss or increased weed seed set.

Estudios de campo compararon el rendimiento del grano de cuatro cultivares de Hordeum vulgare L. ‘Baudin’ de doble hilera en cuatro sitios cuando se sembró a doble espacio en competencia con dos densidades de Lolium rigidum Gaudin LOLRI. Los sitios seleccionados tenían bajas poblaciones anteriores de Lolium rigidum Gaudin LOLRI. Mientras que cuatro cultivares sembrados difirieron en el rendimiento del grano, el espacio entre hileras no tuvo influencia en el comportamiento del cultivar. El doblar el espacio entre hileras disminuyó el rendimiento de Hordeum vulgare L. en tres de los cuatro sitios. El impacto del espacio entre hileras sobre el rendimiento del grano fue más notorio cuando se duplicó a 48 o 50 cm. comparado con 36 cm. de espaciamiento. La competencia de Lolium rigidum Gaudin LOLRI redujo el rendimiento del grano en dos de los 4 sitios. En ambas locaciones la influencia de la competencia de la maleza en el rendimiento del cultivo fue la misma tanto en espacios entre hileras angostas como en las anchas y en una locación, el impacto de la competencia de la maleza fue modificado por el cultivar. Se determinó que sembrar Hordeum vulgare L en hileras anchas favorece la producción de Lolium rigidum Gaudin LOLRI a través de un incremento en la producción de la biomasa y el número de instrumentos de labranza. El desarrollo de sistemas de cultivo para la Hordeum vulgare L basados en un espacio entre hileras arriba de 25 cm. probablemente estarán asociados con un incremento en la productividad de las malezas, a menos que se implementen principios de manejo de malezas bien integrados. Las modificaciones al sistema actual quizás permitan un incremento en el espacio entre hileras sin ninguna pérdida de rendimiento ni de incremento en el conjunto de semillas de maleza.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2004. Hybrid short-lived ryegrass (Lolium hybrid) ‘Safeguard’. Plant Var. J. 17:91.Google Scholar
Blackshaw, R. E., Moyer, J. R., Harker, K. N., and Clayton, G. W. 2005. Integration of agronomic practices and herbicides for sustainable weed management in zero-till barley field pea rotation. Weed Technol 19:190196.CrossRefGoogle Scholar
Brinkman, M. A., Luk, T. M., and Rutledge, J. J. 1979. Performance of spring barley in narrow rows. Agron. J. 71:913916.CrossRefGoogle Scholar
Buck, S., Spackman, G., and Reid, D. 2007. Row spacing and wheat yield. Aust. Grain 16:2426.Google Scholar
Burch, R. N. 1986. Effects of changing row spacings on wheat yields. Final Report: Wheat Industry Research Council Project No. 498/0051 and Western Australian State Wheat Research Committee Project No. 355/0067. Western Australian Department of Agriculture, South Perth. 22.Google Scholar
Bureau of Meteorology 2009. Weather Station Data. http://www.bom.gov.au/climate/data/weather-data.shtml. Accessed: February, 2009.Google Scholar
Champion, G. T., Froud-Williams, R. J., and Holland, J. M. 1998. Interactions between wheat (Triticum aestivum L) cultivar, row spacing and density and the effect on weed suppression and crop yield. Ann. Appl. Biol 133:443453.CrossRefGoogle Scholar
Cook, R. J., Ownley, B. H., Zhang, H., and Vakoch, D. 2000. Influence of paired-row spacing and fertilizer placement on yield and root diseases of direct-seeded wheat. Crop Sci 40:10781087.CrossRefGoogle Scholar
Cousens, R. D. 1996. Comparative growth of wheat, barley and annual ryegrass (Lolium rigidum) in monoculture and mixture. Aust. J. Agric. Res 47:449464.CrossRefGoogle Scholar
Dhima, K. V., Eleftherohorinos, I. G., and Vasilakoglou, I. B. 2000. Interference between Avena sterilis, Phalaris minor, and five barley cultivars. Weed Res 40:549559.CrossRefGoogle Scholar
Finlay, R. C., Reinbergs, E., and Daynard, T. B. 1971. Yield response of spring barley to row spacing and seeding rate. Can. J. Plant Sci 51:527533.CrossRefGoogle Scholar
French, R. J. and Harries, M. 2006. A role for wide row lupin cultivation in Western Australia. in Turner, N. C. and Acuna, T. eds. Groundbreaking Stuff. Proceedings of the 13th Australian Agronomy Conference. Perth, Western Australia: Australian Society of Agronomy.Google Scholar
Hamblin, A. P., Tennant, D., and Cochrane, H. 1992. Tillage and the growth of a wheat crop in a loamy sand. Aust. J. Agric. Res 33:887897.CrossRefGoogle Scholar
Harker, K. N., O'Donovan, J. T., Irvine, R. B., Turkington, K. T., and Clayton, G. W. 2009. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Sci 57:326357.CrossRefGoogle Scholar
Harries, M., French, R., and White, P. 2008a. Crop establishment. Pages 5162. in White, P., French, R., and McLarty, A. eds. Producing Lupins—Bulletin 4720. South Perth, Western Australia: Department of Agriculture and Food Western Australia.Google Scholar
Harries, M., Newman, P., and Hashem, A. 2008b. Weed management. Pages 79100. in White, P., French, R., and McLarty, A. eds. Producing Lupins—Bulletin 4720. South Perth, Western Australia: Department of Agriculture and Food Western Australia.Google Scholar
Hashem, A., Collins, M., Bowran, D., and Blackwell, P. 2008. Wide row lupins (Lupinus angustifolius L.) cropping systems may sustain lupin production in Western Australia. in Unkovich, M. J. ed. Global Issues, Paddock Action. Proceedings of the 14th Australian Agronomy Conference. Adelaide, South Australia: Australian Society of Agronomy.Google Scholar
Holliday, R. 1963. The effect of row spacing on the yield of cereals. Field Crop Abst 16:7181.Google Scholar
Jones, R. E., Vere, D. T., Alemseged, Y., and Medd, R. W. 2005. Estimating the economic cost of weeds in Australian annual winter crops. Agric. Econ 32:253265.CrossRefGoogle Scholar
Kemp, D. R., Auld, B. A., and Medd, R. W. 1983. Does optimizing plant arrangements reduce interference or improve the utilization of space? Agric. Syst 12:3136.CrossRefGoogle Scholar
Kirkland, K. J. 1993. Weed management in spring barley (Hordeum vulgare) in the absence of herbicides. J. Sust. Agric 3:95104.CrossRefGoogle Scholar
Kleemann, S. and Gill, G. 2008. Row spacing, water use, and yield of wheat (Triticum aestivum), barley (Hordeum vulgare) and faba bean (Vicia faba). in Unkovich, M. J. ed. Global Issues, Paddock Action. Proceedings of the 14th Australian Agronomy Conference. Adelaide, South Australia: Australian Society of Agronomy.Google Scholar
Koscelny, J. A., Peeper, T. F., Solie, J. B., and Solomon, S. G. 1990. Effect of wheat (Triticum aestivum) row spacing, seeding rate and cultivar on yield loss from cheat (Bromus secalinus). Weed Technol 4:487492.CrossRefGoogle Scholar
Koscelny, J. A., Peeper, T. F., Solie, J. B., and Solomon, S. G. 1991. Seeding date, seeding rate, and row spacing affect wheat (Triticum aestivum) and cheat (Bromus secalinus). Weed Technol 5:707712.CrossRefGoogle Scholar
Lafond, G. P. 1994. Effects of row spacing, seeding rate and nitrogen on yield of barley and wheat under zero-till management. Can. J. Plant Sci 74:703711.CrossRefGoogle Scholar
Lemerle, D., Verbeek, B., and Coombes, N. 1995. Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Res 35:503509.CrossRefGoogle Scholar
Leonard, L. 1993. Managing for stubble retention. Bulletin 4721. Western Australia, South Perth: Department of Agriculture.Google Scholar
Medd, D. F., Auld, B. A., Kemp, D. R., and Murison, R. D. 1985. The influence of wheat density and spatial arrangement on annual ryegrass Lolium rigidum Gaudin competition. Aust. J. Agric. Res 36:361371.CrossRefGoogle Scholar
Mertens, S. K. and Jansen, J. 2002. Weed seed production, crop planting pattern, and mechanical weeding in wheat. Weed Sci 50:748756.CrossRefGoogle Scholar
Middleton, G. K., Hebert, T. T., and Murphy, C. F. 1964. Effect of seeding rate and row width on yield and on components of yield in winter barley. Agron. J. 56:307308.CrossRefGoogle Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., Clayton, G. W., Moyer, J. R., Dosdall, L. M., Maurice, D. C., and Turkington, T. K. 2007. Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Prot 26:390398.CrossRefGoogle Scholar
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., McAndrew, D. W., and Clayton, G. W. 2001a. Canada thistle (Cirsium arvense) management in canola (Brassica rapa) and barley (Hordeum vulgare) rotations under zero tillage. Can. J. Plant Sci 81:183190.CrossRefGoogle Scholar
O'Donovan, J. T., Clayton, G. W., Harker, K. N., Johnston, A. M., Turkington, T. K., Kutcher, H. R., and Stevenson, F. C. 2005. Barley response to seed placement and herbicide timing. Can. J. Plant Sci 85:265270.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., and Hall, L. M. 2000. Wild oat (Avena fatua) interference in barley (Hordeum vulgare) is influenced by barley variety and seeding rate. Weed Technol 14:624629.CrossRefGoogle Scholar
O'Donovan, J. T., Harker, K. N., Clayton, G. W., Newman, J. C., Robinson, D., and Hall, L. M. 2001b. Barley seeding rate influences the effects of variable herbicide rates on wild oats. Weed Sci 49:746754.CrossRefGoogle Scholar
Paynter, B. H. and Hills, A. L. 2009. Barley and rigid ryegrass (Lolium rigidum) competition is influenced by crop cultivar and density. Weed Technol 23:4048.CrossRefGoogle Scholar
Photiades, I. and Hadjichristodoulou, A. 1984. Sowing date, sowing depth, seed rate and row spacing of wheat and barley under dryland conditions. Field Crops Res 9:151162.CrossRefGoogle Scholar
Riethmuller, G. 2000. Tillage. Pages 175200. in Anderson, W. K. and Garlinge, J. R. eds. The Wheat Book—Principles and Practices, Bulletin 4443. South Perth, Western Australia: Department of Agriculture Western Australia.Google Scholar
Riethmuller, G. 2005. Ryegrass seed set increases with increasing row spacing and stubble retention. Pages 2729. in Douglas, A. ed. Agribusiness Crop Updates 2005—Weeds Update, Perth, Western Australia. South Perth, Western Australia: Department of Agriculture and Food Western Australia.Google Scholar
Riethmuller, G. P. 1988. Draft requirements of tillage equipment in the Western Australian wheatbelt. Pages 137141. in. Conference on Agricultural Engineering: Institution of Engineers. New South Wales, Australia: Hawkesbury.Google Scholar
Riethmuller, G. P. and Jarvis, R. J. 1986. The effect of tine spacing and tillage depth on a subsoilers energy requirements on a deep yellow loamy sand. Pages 315319. in. Conference on Agricultural Engineering: Institution of Engineers. Adelaide, South Australia:.Google Scholar
Riley, I. T. and Barbetti, M. J. 2008. Australian anguinids: their agricultural impact and control. Austral. Plant Pathol 37:289297.CrossRefGoogle Scholar
Satorre, E. H. and Snaydon, R. W. 1992. A comparison between root and short competition of spring cereals and Avena fatua L. Weed Res 32:4555.CrossRefGoogle Scholar
Schoknecht, N. 2002. Soil groups of Western Australia. A simple guide to the main soils of Western Australia. Resource Management Technical Report 246. South Perth, Western Australia: Department of Agriculture, Western Australia.Google Scholar
Schmidt, C. P. and Belford, R. K. 1993. A comparison of different tillage-seeding systems: the interaction of tillage and time of sowing on sandplain soils in Western Australia. Aust. J. Exp. Agric 33:895900.CrossRefGoogle Scholar
Shackley, B. J. 2000. Crop management. Pages 131164. in Anderson, W. K. and Garlinge, J. R. eds. The Wheat Book—Principles and Practices, Bulletin 4443. South Perth, Western Australia: Department of Agriculture Western Australia.Google Scholar
Simmons, S. R., Rasmusson, D. C., and Wiersma, J. V. 1982. Tillering in barley: genotype, row spacing, and seeding rate effects. Crop Sci 22:801805.CrossRefGoogle Scholar
Watson, P. R., Derksen, D. A., and Van Acker, R. C. 2006. The ability of 29 barley cultivars to compete and withstand competition. Weed Sci 54:783792.CrossRefGoogle Scholar