Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T02:22:53.195Z Has data issue: false hasContentIssue false

Screening for Herbicide Resistance in Weeds

Published online by Cambridge University Press:  20 January 2017

Hugh J. Beckie*
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
Ian M. Heap
Affiliation:
WeedSmart, P.O. Box 1365, Corvallis, OR 97339
Reid J. Smeda
Affiliation:
Department of Agronomy, University of Missouri, Columbia, MO 65211
Linda M. Hall
Affiliation:
Agronomy Unit, Alberta Agriculture, Food and Rural Development, 6903 116 Street, Edmonton, AB, Canada T6H 5Z2
*
Corresponding author's E-mail: beckieh@em.agr.ca.

Abstract

Diagnosing herbicide-resistant weeds as a first step in resistance management and monitoring their nature, distribution, and abundance demands efficient and effective screening tests. This review summarizes and recommends appropriate seed sampling techniques, protocols for screening weeds for resistance to herbicides of different sites of action, interpretation of results, and information given to the grower. Elements common to all screening procedures are reviewed. Choosing appropriate discriminating doses to distinguish between resistant and susceptible weed biotypes is the most important factor in achieving accurate and consistent results. Interpretation of results is also critical because resistant weeds may comprise a small portion of the population in suspected accessions or biotypes.

Type
Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adkins, S. W., Wills, D., Boersma, M., Walker, S. R., Robinson, G., McLeod, R. J., and Einam, J. P. 1997. Weeds resistant to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Res. 37: 343349.Google Scholar
Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 29: 316322.Google Scholar
Alcocer-Ruthling, M., Thill, D. C., and Mallory-Smith, C. 1992. Monitoring the occurrence of sulfonylurea-resistant prickly lettuce (Lactuca serriola). Weed Technol. 6: 437440.Google Scholar
Ali, A. and Machado, V. S. 1981. Rapid detection of ‘triazine resistant’ weeds using chlorophyll fluorescence. Weed Res. 191197.Google Scholar
Alizadeh, H. M., Preston, C., and Powles, S. B. 1998. Paraquat-resistant biotypes of Hordeum glaucum from zero-tillage wheat. Weed Res. 38: 139142.Google Scholar
Amrhein, N. 1993. EPSP synthase: isolation and assay. In Boger, P. and Sandmann, G., eds. Target Assays for Modern Herbicides and Related Phytotoxic Compounds. Boca Raton, FL: Lewis Publishers. pp. 115121.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10: 570575.Google Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1998. Discovery of a primisulfuron-resistant shattercane (Sorghum bicolor) biotype. Weed Technol. 12: 7477.CrossRefGoogle Scholar
Andrews, T. S. and Morrison, I. N. 1997. The persistence of trifluralin resistance in green foxtail (Setaria viridis) populations. Weed Technol. 11: 369372.Google Scholar
Anthony, R. G., Waldin, T. R., Ray, J. A., Bright, S.W.J., and Hussey, P. J. 1998. Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature. 393: 260263.Google Scholar
Baumgartner, J. R., Al-Khatib, K., and Currie, R. S. 1999. Survey of common sunflower (Helianthus annuus) resistance to imazethapyr and chlorimuron in Northeast Kansas. Weed Technol. 13: 510514.Google Scholar
Beckie, H. J., Friesen, L. F., Nawolsky, K. M., and Morrison, I. N. 1990. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Technol. 4: 505508.Google Scholar
Beckie, H. J., Thomas, A. G., and Légère, A. 1999a. Nature, occurrence, and cost of herbicide-resistant green foxtail (Setaria viridis) across Saskatchewan ecoregions. Weed Technol. 13: 626631.Google Scholar
Beckie, H. J., Thomas, A. G., Légère, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999b. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13: 612625.Google Scholar
Beckie, H. J., Thomas, A. G., and Stevenson, F. C. 1999c. Saskatchewan Weed Survey: Herbicide Resistant Wild Oat 1997. Saskatoon, SK: Agriculture and Agri-Food Canada Weed Survey Ser. Publ. 99-4. 32 p.Google Scholar
Bourgeois, L. and Morrison, I. N. 1997a. Mapping risk areas for resistance to ACCase inhibitor herbicides in Manitoba. Can. J. Plant Sci. 77: 173179.CrossRefGoogle Scholar
Bourgeois, L. and Morrison, I. N. 1997b. A survey of ACCase inhibitor resistant wild oat in a high risk township in Manitoba. Can. J. Plant Sci. 77: 703708.CrossRefGoogle Scholar
Bourgeois, L., Kenkel, N. C., and Morrison, I. N. 1997a. Characterization of cross-resistance patterns in acetyl-CoA carboxylase inhibitor resistant wild oat (Avena fatua). Weed Sci. 45: 750755.Google Scholar
Bourgeois, L., Morrison, I. N., and Kelner, D. 1997b. Field and producer survey of ACCase resistant wild oat in Manitoba. Can. J. Plant Sci. 77: 709715.Google Scholar
Brain, P. and Cousens, R. 1989. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 29: 9396.Google Scholar
Burnet, M.W.M., Barr, A. R., and Powles, S. B. 1994a. Chloracetamide resistance in rigid ryegrass (Lolium rigidum). Weed Sci. 42: 153157.Google Scholar
Burnet, M.W.M., Christopher, J. T., Holtum, J.A.M., and Powles, S. B. 1994b. Identification of two mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium rigidum) using a selective germination medium. Weed Sci. 42: 468473.Google Scholar
Carey, V. F. III, Hoagland, R. E., and Talbert, R. E. 1995. Verification and distribution of propanil-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Technol. 9: 366372.Google Scholar
Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science. 224: 14431445.Google Scholar
Clarke, J. H. and Moss, S. R. 1989. The distribution and control of herbicide resistant Alopecurus myosuroides (black-grass) in central and eastern England. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, Surrey, UK: British Crop Protection Council. pp. 301308.Google Scholar
Clarke, J. H. and Moss, S. R. 1991. The occurrence of herbicide resistant Alopecurus myosuroides (black-grass) in the United Kingdom and strategies for its control. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, UK: British Crop Protection Council. pp. 10411048.Google Scholar
Clarke, J. H., Blair, A. M., and Moss, S. R. 1994. The testing and classification of herbicide resistant Alopecurus myosuroides (black-grass). Asp. Appl. Biol. 37: 181188.Google Scholar
Davidson, R. M., Maxwell, B. D., and Malchow, W. E. 1996. Spatial and temporal patterns of herbicide resistant wild oats. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Dept. Weed Control and Pesticide Ecology. pp. 13751380.Google Scholar
Dellow, J. J., Incerti, M., Britton, R., and Bishop, A. 1996. Herbicide resistance extension strategy for the South Eastern wheat belt of New South Wales, Australia. Proc. Second International Weed Control Congress, Copenhagen, Denmark. Flakkebjerg, Slagelse, Denmark: Dept. Weed Control and Pesticide Ecology. pp. 487492.Google Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. In Roe, R. M., Burton, J. D., and Kuhr, R. J., eds. Herbicide Activity, Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS Press. pp. 159186.Google Scholar
Devine, M. D. and Shimabukuro, R. H. 1994. Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. pp. 141169.Google Scholar
Devine, M. D., Marles, M.A.S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31: 273280.Google Scholar
Dupont, S., Biesenthal, C., and Devine, M. D. 1997. In vivo diagnostic of grass weed resistance to ACCase-inhibitor herbicides. Weed Sci. Soc. Am. Abstr. 37:109.Google Scholar
Dyer, W. E. 1994. Resistance to glyphosate. In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. pp. 229241.Google Scholar
Ecological Stratification Working Group. 1995. A National Ecological Framework for Canada. Ottawa, ON/Hull, QC: Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch. 125 p.Google Scholar
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41: 100106.Google Scholar
Fuerst, E. P., Nakatani, H. Y., Dodge, A. D., Penner, D., and Arntzen, C. J. 1985. Paraquat resistance in Conyza . Plant Physiol. 77: 984989.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7: 519524.Google Scholar
Giebel, J., Stachecki, S., and Praczyk, T. 1999. The level of polyamines as an indicator of resistance or susceptibility of Chenopodium album to atrazine. Brighton Crop Prot. Conf. Weeds. 1: 163166.Google Scholar
Gill, G. S. 1995. Development of herbicide resistance in rigid ryegrass populations (Lolium rigidum Gaud.) in the cropping belt of Western Australia. Aust. J. Exp. Agric. 35: 6772.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6: 587591.Google Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. pp. 2760.Google Scholar
Hall, L. M., Stromme, K. M., Horsman, G. P., and Devine, M. D. 1998. Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 46: 390396.Google Scholar
Hall, L. M., Beckie, H. J., and Wolf, T. M. 1999. How Herbicides Work: Biology to Application. Edmonton, AB: Alberta Agriculture, Food and Rural Development. 134 p.CrossRefGoogle Scholar
Hashem, A., Hallam, S., Bowran, D., and Allan, M. 1999. Herbicide resistance in wild radish (Raphanus raphanistrum): new seed soaking method for resistance testing. [Online] http://life.csu.edu.au/agronomy/papers/290/290.html [accessed August 29, 1999].Google Scholar
Heap, I. M. 1994. Identification and documentation of herbicide resistance. Phytoprotection. 75 (Suppl.): 8590.Google Scholar
Heap, I. M. 1999a. The occurrence of herbicide-resistant weeds worldwide. In International Survey of Herbicide-Resistant Weeds. [Online] http://www.weedscience.com [accessed December 26, 1999].Google Scholar
Heap, I. M. 1999b. International survey of herbicide-resistant weeds: lessons and limitations. Brighton Crop Prot. Conf. Weeds. 3: 769776.Google Scholar
Heap, I. and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of rigid ryegrass, Lolium rigidum, resistant to diclofopmethyl. Aust. J. Agric. Res. 37: 149156.Google Scholar
Heap, I. M., Murray, B. G., Loeppky, H. A., and Morrison, I. N. 1993. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci. 41: 232238.Google Scholar
Hensley, J. R. 1981. A method for identification of triazine resistant and susceptible biotypes of several weeds. Weed Sci. 29: 7073.Google Scholar
Hinz, J.R.R. and Owen, M.D.K. 1997. Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol. 11: 1318.Google Scholar
James, E. H., Kemp, M. S., and Moss, S. R. 1995. Phytotoxicity of trifluoromethyl- and methyl-substituted dinitroaniline herbicides on resistant and susceptible populations of slender foxtail (Alopecurus myosuroides). Pestic. Sci. 43: 273277.CrossRefGoogle Scholar
Kern, A. J., Colliver, C. T., Maxwell, B. D., Fay, P. K., and Dyer, W. E. 1996. Characterization of wild oat (Avena fatua L.) populations and an inbred line with multiple herbicide resistance. Weed Sci. 44: 847852.Google Scholar
Kwon, C. S. and Penner, D. 1995. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to ALS inhibiting herbicides and piperonyl butoxide. Weed Sci. 43: 561565.Google Scholar
Lee, C. D., Martin, A. R., Roeth, R. W., Johnson, B. E., and Lee, D. J. 1999. Comparison of ALS inhibitor resistance and allelic interactions in shattercane accessions. Weed Sci. 47: 275281.Google Scholar
Lehoczki, E., Laskay, G., Gaal, I., and Szigeti, Z. 1992. Mode of action of paraquat in leaves of paraquat-resistant Conyza canadensis (L.) Cronq. Plant, Cell Environ. 15: 531539.Google Scholar
Letouzé, A. and Gasquez, J. 1999. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. populations. Weed Res. 39: 3748.Google Scholar
Letouzé, A., Gasquez, J., Vaccara, D., Orlando, D., Leterrier, J. L., Roy, C., and Bouvard-Derieux, E. 1997. Development of new reliable quick tests and state of grass-weed herbicide resistance in France. Brighton Crop Prot. Conf. Weeds. 1: 325330.Google Scholar
Letouzé, A., Matéjicek, A., Henry, A., and Gasquez, J. 1999. Rapid determination of herbicide resistance pattern in blackgrass. Brighton Crop Prot. Conf.—Weeds. Vol. 2. pp. 557558.Google Scholar
Lovell, S. T., Wax, L. M., Simpson, D. M., and McGlamery, M. 1996. Using the in vivo acetolactate synthase (ALS) assay for identifying herbicideresistant weeds. Weed Technol. 10: 936942.Google Scholar
Machado, V. S., Arntzen, C. J., Bandeen, J. D., and Stephenson, G. R. 1978. Comparative triazine effects upon system II photochemistry in chloroplasts of two common lambsquarters (Chenopodium album) biotypes. Weed Sci. 26: 318322.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Stallings, G. P. 1993. Survey and gene flow in acetolactate synthase resistant kochia and Russian thistle. Brighton Crop Prot. Conf. Weeds. 2: 555558.Google Scholar
Mansooji, A. M., Holtum, J. A., Boutsalis, P., Matthews, J. M., and Powles, S. B. 1992. Resistance to aryloxyphenoxypropionate herbicides in two wild oat species (Avena fatua and Avena sterilis ssp. ludoviciana). Weed Sci. 40: 599605.Google Scholar
McAlister, F. M., Holtum, J.A.M., and Powles, S. B. 1995. Dinitroaniline herbicide resistance in rigid ryegrass (Lolium rigidum). Weed Sci. 43: 5562.Google Scholar
Morrison, I. N., Todd, B. G., and Nawolsky, K. M. 1989. Confirmation of trifluralin-resistant green foxtail (Setaria viridis) in Manitoba. Weed Technol. 3: 544551.Google Scholar
Moss, S. R. 1987. Herbicide resistance in black-grass (Alopecurus myosuroides). Brighton Crop Prot. Conf. Weeds. pp. 879886.Google Scholar
Moss, S. R. 1990. Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci. 38: 492496.Google Scholar
Moss, S. R. 1995. Techniques for determining herbicide resistance. Brighton Crop Prot. Conf. Weeds. 2: 547556.Google Scholar
Moss, S. R. 2000. The Rothamsted Rapid Resistance Test for detecting herbicide-resistance in annual grass weeds. Weed Sci. Soc. Am. Abstr. 40: 4243.Google Scholar
Moss, S. R. and Cussans, G. W. 1987. Detection and practical significance of herbicide resistance with particular reference to the weed Alopecurus myosuroides (black-grass). In Ford, M., Hollomon, D., Khambay, B., and Sawicki, R, eds. Biological and Chemical Approaches to Combating Resistance in Xenobiotics. Chichester, UK: Ellis Horwood. pp. 200213.Google Scholar
Moss, S. and Heyting, S. 1997. Influence of safeners on the efficacy of herbicides against resistant grass-weeds. In Proceedings of Resistance ’97: Integrated Approach to Combating Resistance. Harpenden, Herts, UK: IACR-Rothamsted.Google Scholar
Moss, S. R., Albertini, A., Arlt, K., et al. 1998. Screening for herbicide resistance in black-grass (Alopecurus myosuroides): a “ring” test. Med. Fac. Landbouww., Univ. Gent, 63/3a:671-679.Google Scholar
Moss, S. R., Clarke, J. H., Blair, A. M., Culley, T. N., Read, M. A., Ryan, P. J., and Turner, M. 1999. The occurrence of herbicide-resistant grass-weeds in the United Kingdom and a new system for designating resistance in screening assays. Brighton Crop Prot. Conf. Weeds. 1: 179184.Google Scholar
Murray, B. G., Friesen, L. F., Beaulieu, K. J., and Morrison, I. N. 1996. A seed bioassay to identify acetyl-CoA carboxylase inhibitor resistant wild oat (Avena fatua) populations. Weed Technol. 10: 8589.CrossRefGoogle Scholar
Norsworthy, J. K., Talbert, R. E., and Hoagland, R. E. 1998. Chlorophyll fluorescence for rapid detection of propanil-resistant barnyardgrass (Echinochloa crus-galli). Weed Sci. 46: 163169.Google Scholar
O'Donovan, J. T., Sharma, M. P., Harker, K. N., Maurice, D., Baig, M. N., and Blackshaw, R. E. 1994. Wild oat (Avena fatua) populations resistant to triallate are also resistant to difenzoquat. Weed Sci. 42: 195199.Google Scholar
O'Donovan, J. T., Rashid, A., Nguyen, H. V., Newman, J. C., Khan, A. A., Johnson, C. I., Blackshaw, R. E., and Harker, K. N. 1996. A seedling bioassay for assessing the response of wild oat (Avena fatua) populations to triallate. Weed Technol. 10: 931935.Google Scholar
Ort, D. R., Ahrens, W. H., Martin, B., and Stoller, E. W. 1983. Comparison of photosynthetic performance in triazine-resistant and susceptible biotypes of Amaranthus hybridus . Plant Physiol. 72: 925930.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46: 604607.Google Scholar
Preston, C. 1994. Resistance to photosystem I disrupting herbicides. In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants—Biology and Biochemistry. Boca Raton, FL: CRC Press. pp. 6182.Google Scholar
Radosevich, S. R., Steinback, K. E., and Arntzen, C. J. 1979. Effect of photosystem II inhibitors on thylakoid membranes of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 27: 216218.CrossRefGoogle Scholar
Rashid, A., O'Donovan, J. T., Khan, A. A., Sharma, M. P., and Nguyen, H. V. 1997. Response of triallate-resistant and -susceptible wild oat (Avena fatua) populations to difenzoquat and EPTC in a seedling bioassay. Weed Technol. 11: 527531.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75: 827831.Google Scholar
Reade, J.P.H., Belfield, J. L., and Cobb, A. H. 1999. Rapid tests for herbicide resistance in black-grass based on elevated glutathione S-transferase activity and abundance. Brighton Crop Prot. Conf. Weeds. 1: 185190.Google Scholar
Retzinger, E. J. and Mallory-Smith, C. 1997. Classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 11: 384393.Google Scholar
Richter, J. and Powles, S. B. 1993. Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum). Plant Physiol. 102: 10371041.Google Scholar
Romano, M. L., Stephenson, G. R., Tal, A., and Hall, J. C. 1993. The effect of monooxygenase and glutathione S-transferase inhibitors on the metabolism of diclofop-methyl and fenoxaprop-ethyl in barley and wheat. Pestic. Biochem. Physiol. 46: 181189.Google Scholar
Sattin, M., Berto, D., Zanin, G., and Tabacchi, M. 1999. Resistance to ALS inhibitors in weeds of rice in north-western Italy. Brighton Crop Prot. Conf. Weeds. 3: 783790.Google Scholar
Schmidt, R. R. 1997. HRAC classification of herbicides according to mode of action. Proc. Brighton Crop Prot. Conf.—Weeds. Farnham, Surrey, UK: British Crop Protection Council. pp. 11331140.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218227.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76: 545546.Google Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9: 1722.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12: 527530.Google Scholar
Singh, B. K., Stidham, M. A., and Shaner, D. L. 1988. Assay of acetohydroxyacid synthase. Anal. Biochem. 171: 173179.Google Scholar
Smeda, R. J. and Vaughn, K. C. 1997. Mechanisms of resistance to herbicides. In Sjut, V., ed. Molecular Mechanisms of Resistance to Agrochemicals. Volume 13. Berlin: Springer-Verlag. pp. 79123.Google Scholar
Smeda, R. J., Vaughn, K. C., and Morrison, I. N. 1992. A novel pattern of herbicide cross-resistance in a trifluralin-resistant biotype of green foxtail [Setaria viridis (L.) Beauv.]. Pestic. Biochem. Physiol. 42: 227241.Google Scholar
Smeda, R. J., Hasegawa, P. M., Goldsborough, P. B., Singh, N. K., and Weller, S. C. 1993. A serine-to-threonine substitution in the triazine herbicidebinding protein in potato cells results in atrazine resistance without impairing productivity. Plant Physiol. 103: 911917.Google Scholar
Smeda, R. J., Barrentine, W. L., Snipes, C. E., and Rippee, J. H. 1997. Identification of johnsongrass resistance to graminicides and alternative control methods. International Symposium on Weed and Crop Resistance to Herbicides, Cordoba, Spain. Dordrect, The Netherlands: Kluwer Academic. pp. 262263.Google Scholar
Smisek, A., Doucer, C., Jones, M., and Weaver, S. 1998. Paraquat resistance in horseweed (Conyza canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex County, Ontario. Weed Sci. 46: 200204.Google Scholar
Stallings, G. P., Thill, D. C., and Mallory-Smith, C. A. 1994. Sulfonylurearesistant Russian thistle (Salsola iberica) survey in Washington State. Weed Technol. 8: 258264.Google Scholar
Streibig, J. C. 1988. Herbicide bioassay. Weed Res. 28: 479484.Google Scholar
Tardif, F. J. and Powles, S. B. 1994. Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiol. Plant. 91: 488494.CrossRefGoogle Scholar
Tardif, F. J., Holtum, J.A.M., and Powles, S. B. 1993. Occurrence of a herbicide-resistant acetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected by sethoxydim. Planta. 190: 176181.Google Scholar
Thai, K. M., Jana, S., and Naylor, J. M. 1985. Variability for response to herbicides in wild oat (Avena fatua) populations. Weed Sci. 33: 829835.Google Scholar
Thomas, A. G. 1985. Weed survey system used in Saskatchewan for cereal and oilseed crops. Weed Sci. 33: 3443.Google Scholar
Thomas, A. G., Wise, R. F., Frick, B. L., and Juras, L. T. 1996. Saskatchewan Weed Survey: Cereal, Oilseed and Pulse Crops 1995. Saskatoon, SK: Agriculture and Agri-Food Canada Weed Survey Ser. Publ. 96-1. 419 p.Google Scholar
Tucker, E. S. and Powles, S. B. 1991. A biotype of hare barley (Hordeum leporinum) resistant to paraquat and diquat. Weed Sci. 39: 159162.Google Scholar
Van Oorschot, J.L.P. and Van Leeuwen, P. H. 1992. Use of fluorescence induction to diagnose resistance of Alopecurus myosuroides Huds. (blackgrass) to chlorotoluron. Weed Res. 32: 473482.Google Scholar
Vencill, W. K. and Foy, C. L. 1988. Distribution of triazine-resistant smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) in Virginia. Weed Sci. 36: 497499.Google Scholar
[WSSA] Weed Science Society of America. 1998. “Herbicide resistance” and “herbicide tolerance” defined. Weed Technol. 12:789.Google Scholar
Yanase, D. and Andoh, A. 1993. The paraquat bioassay to evaluate photosynthesis inhibition. In Boger, P. and Sandmann, G., eds. Target Assays For Modern Herbicides and Related Phytotoxic Compounds. Boca Raton, FL: Lewis. pp. 257262.Google Scholar