Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T03:09:59.007Z Has data issue: false hasContentIssue false

Rotational Crops Response to Soil Applied Trifloxysulfuron

Published online by Cambridge University Press:  20 January 2017

Bradford W. Minton
Affiliation:
Syngenta Crop Protection, Cypress, TX 77429
Mark A. Matocha*
Affiliation:
Syngenta Crop Protection, Cypress, TX 77429
Scott A. Senseman
Affiliation:
Syngenta Crop Protection, Cypress, TX 77429
*
Corresponding author's E-mail: ma-matocha@tamu.edu

Abstract

Research was conducted along the Texas Gulf Coast in 1998 and 1999 to determine trifloxysulfuron soil persistence and potential injury to corn, grain sorghum, rice, and soybeans. Trifloxysulfuron was applied at 0, 7.5, and 60 g/ha to plots 0, 15, 30, 60, and 90 d prior to planting of crops. Corn and grain sorghum were more sensitive to trifloxysulfuron than rice and soybeans when planted 0 to 90 d after treatment (DAT). Trifloxysulfuron was more persistent at the San Patricio location than at Fort Bend, which had a lower soil pH. However, no phytotoxicity or plant-height reduction was observed at the four locations with corn, grain sorghum, rice, and soybeans planted 209 to 312 DAT. Greenhouse data showed that neither corn nor sunflower planted 209 to 312 DAT were adversely affected by either rate of trifloxysulfuron. Trifloxysulfuron applied to cotton up to 20 g/ha the previous year should not cause phytotoxicity to corn, grain sorghum, rice, or soybeans when grown in rotation under soil and weather conditions similar to those in these studies.

Type
Weed Management — Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 1985. Environmental effects of metsulfuron and chlorsulfuron bioactivity in soil. J. Environ. Qual. 14:517521.Google Scholar
Anderson, R. L. and Barrett, M. R. 1985. Residual phytotoxicity of chlorsulfuron bioactivity in two soils. J. Environ. Qual. 14:111114.Google Scholar
Anonymous 2003. Envoke® herbicide product label. Syngenta Publication No. SCP 1132A-L1 0903. Greensboro, NC Syngenta. 16.Google Scholar
Barnes, C. J., Goetz, A. J., and Lavy, T. L. 1989. Effects of imazaquin residues on cotton (Gossypium hirsutum). Weed Sci. 37:820824.Google Scholar
Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1987. Sulfonylurea herbicides. Pages 117189. in Kearney, P. C. and Kaufman, D. D., editors. Herbicides: Chemistry, Degradation, and Mode of Action. Volume 3. New York Marcel Dekker.Google Scholar
Bovey, R. W. and Senseman, S. A. 1998. Response of food and forage crops to soil-applied imazapyr. Weed Sci. 46:614617.Google Scholar
Bray, L. D., Heard, N. E., Overman, M. O., Vargo, J. D., King, D. L., Lawrence, L. J., and Phelps, A. W. 1997. Hydrolysis of prosulfuron at pH 5: evidence for a resonance-stabilized triazone cleavage product. Pestic. Sci. 51:5664.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
Burke, I. C. and Wilcut, J. W. 2004. Weed management in cotton with CGA-362622, fluometuron, and pyrithiobac. Weed Technol. 18:268272.Google Scholar
Fredrickson, D. R. and Shea, P. J. 1986. Effect of soil pH on degradation, movement, and plant uptake of chlorsulfuron. Weed Sci. 34:328332.Google Scholar
Fuesler, T. P. and Hanafey, M. K. 1990. Effect of moisture on chlorimuron degradation in soil. Weed Sci. 38:256261.Google Scholar
Goetz, A. J., Walker, R. H., Wehtje, G., and Hajek, B. K. 1989. Sorption and mobility of chlorimuron in Alabama soils. Weed Sci. 37:428433.Google Scholar
Hudetz, M., Foery, W., Wells, J., and Soares, J. E. 2000. CGA-362622, a new low rate Novartis post-emergent herbicide for cotton and sugarcane. Proc. South. Weed Sci. Soc. 52:163166.Google Scholar
Johnson, D. H., Jordan, D. L., Johnson, W. G., Talbert, R. E., and Frans, R. E. 1993. Nicosulfuron, primisulfuron, imazethapyr, and DPX-PE350 injury to succeeding crops. Weed Technol. 7:641644.Google Scholar
Johnson, D. J., Talbert, R. E., and Horton, D. R. 1995. Carryover potential of imazaquin to cotton, grain sorghum, wheat, rice, and corn. Weed Sci. 43:454460.Google Scholar
Kells, J. J., Leep, R. H., Tesar, M. B., Leavitt, R. A., and Cudnohufsky, J. 1990. Effect of atrazine and tillage on alfalfa (Medicago sative) establishment in corn (Zea mays) –alfalfa rotation. Weed Technol. 4:360365.Google Scholar
Kendig, A. and Ohmes, A. 2001. CGA-362622 for early postemergent weed control in cotton. Proc. Beltwide Cotton conf., National Cotton Council, Memphis, TN 1:509.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1994. Soybean (Glycine max) and rotational crops response to PPI chlorimuron, clomazone, imazaquin, and imazethapyr. Weed Technol. 8:224230.Google Scholar
Loux, M. M., Liebl, R. A., and Slife, F. W. 1989. Absorption of imazaquin and imazethapyr on soils, sediments, and selected adsorbents. Weed Sci. 37:712718.CrossRefGoogle Scholar
Monks, C. D. and Banks, P. A. 1991. Rotational crop response to chlorimuron, clomazone, and imazaquin applied the previous year. Weed Sci. 39:629633.CrossRefGoogle Scholar
Namenek, R. C., Smith, K. L., and Branson, J. W. 2001. Effectiveness of CGA-362622 and pyrithiobac sodium in cotton weed control systems. Proc. South. Weed Sci. Soc. 54:23.Google Scholar
Porterfield, D., Everman, W. J., and Wilcut, J. W. 2006. Soybean response to residual and in-season treatments of trifloxysulfuron. Weed Technol. 20:384388.Google Scholar
Porterfield, D. and Wilcut, J. W. 2003. Peanut (Arachis hypogea L.) response to residual and in-season treatments of CGA-362622. Weed Technol. 17:441445.Google Scholar
Porterfield, D. and Wilcut, J. W. 2006. Corn (Zea mays) response to trifloxysulfuron. Weed Technol. 20:8185.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 50:642647.CrossRefGoogle Scholar
Richardson, R. J., Wilson, H. P., and Hines, T. E. 2001. CGA-362622, a new option for yellow nutsedge (Cyperus esculentus) control in cotton. Proc. South. Weed Sci. Soc. 54:1112.Google Scholar
Richardson, R. J., Wilson, H. P., Armel, G. R., and Hines, T. E. 2005. Responses of imidazolinone-resistant corn, several weeds, and two rotational crops to trifloxysulfuron. Weed Technol. 19:744748.Google Scholar
Seifert, S., Shaw, D. R., Kingery, W. L., Snipes, C. E., and Wesley, R. A. 2001. Imazaquin mobility and persistence in a Sharkey clay soil as influenced by tillage systems. Weed Sci. 49:571577.Google Scholar
Stephenson, D. O. IV, Brecke, B. J., and Unruh, J. B. 2006. Control of torpedograss (Panicum repens) with trifloxysulfuron–sodium in bermudagrass (Cynodon dactylon × Cynodon transvaalensis) turf. Weed Technol. 20:351355.Google Scholar
Thirunarayanan, K., Zimdahl, R. L., and Smika, D. E. 1985. Chlorsulfuron adsorption and degradation in soil. Weed Sci. 33:558563.Google Scholar
Vencill, W. K. and Banks, P. A. 1994. Dissipation of chlorimuron in southern soils. Weed Sci. 42:625628.Google Scholar
Vicari, A., Zimdahl, R. L., Cranmer, B. K., and Dinelli, G. 1996. Primisulfuron and rimsulfuron degradation in aqueous solution and adsorption in six Colorado soils. Weed Sci. 44:672677.Google Scholar
Wiese, A. F., Wood, M. L., and Chenault, E. W. 1988. Persistence of sulfonylureas in Pullman clay loam. Weed Technol. 2:251256.Google Scholar