Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T15:54:54.208Z Has data issue: false hasContentIssue false

Response of Wine Grape Cultivars to Simulated Drift Rates of 2,4-D, Dicamba, and Glyphosate, and 2,4-D or Dicamba Plus Glyphosate

Published online by Cambridge University Press:  20 January 2017

Mohsen Mohseni-Moghadam
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
Scott Wolfe
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
Imed Dami
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
Douglas Doohan*
Affiliation:
Department of Horticulture and Crop Science, 1680 Madison Avenue, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
*
Corresponding author's E-mail: doohan.1@osu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Greenhouse experiments were conducted at Wooster, OH, during 2010 and 2011 growing seasons to evaluate the responses of five wine grape cultivars to sublethal doses of 2,4-D, dicamba, and glyphosate, and the ‘Riesling’ grape to mixtures of 2,4-D plus glyphosate and dicamba plus glyphosate. Treatments were made using a spray system calibrated to deliver 0.757 L min−1 at 276 kPa and 4.8 km h−1. Herbicides were delivered through 8002 flat spray nozzles and applied at 1/30, 1/100, and 1/300 of the recommended field rate of 840, 560, and 840 g ae ha−1 for 2,4-D, dicamba, and glyphosate, respectively. Injury was observed in all treatments 7 d after treatment (DAT). However, injury symptoms greater than 10% were observed 42 DAT in plants treated with 2,4-D at all rates and plants treated with dicamba at the two highest rates. Injury (35%) at 357 DAT was noted only in plants treated with the highest rate of 2,4-D. French hybrids showed slightly less injury symptoms compared with wine grapes at 7 and 42 DAT. Shoot length reduction in plants treated with 2,4-D at the highest rate was 43, 84, and 16% at 7, 42, and 357 DAT, respectively. Glyphosate caused the fewest injury symptoms in Riesling compared with 2,4-D and dicamba when applied separately or tank mixed with glyphosate. Shoot length reduction in Riesling was observed 42 DAT with all rates of 2,4-D, with and without glyphosate and dicamba, and dicamba plus glyphosate at the highest rate; however, at 357 DAT, no effect was observed in shoot length. Spray drift of 2,4-D and dicamba can severely injure grapes, with injury increasing with increased exposure. The combination of 2,4-D plus glyphosate caused greater injury and shoot length reduction in grapes than glyphosate applied alone.

Experimentos de invernadero fueron realizados en Wooster, Ohio, durante las temporadas de crecimiento 2010 y 2011, para evaluar la respuesta de cinco cultivares de uva para vino a dosis subletales de 2,4-D, dicamba, y glyphosate, y de la uva ‘Riesling’ a mezclas de 2,4-D más glyphosate y dicamba más glyphosate. Los tratamientos fueron realizados usando un sistema de aspersión calibrado para liberar 0.757 L min−1 a 276 kPa y 4.8 km h−1. Los herbicidas fueron asperjados mediante una boquilla de abanico plana 8002 a 1/30, 1/100, y 1/300 de las dosis recomendadas de campo de 840, 560, y 840 g ae ha−1 para 2,4-D, dicamba, y glyphosate, respectivamente. Se observó daño en todos los tratamientos 7 d después del tratamiento (DAT). Sin embargo, los síntomas de daño superiores a 10% fueron observados 42 DAT en plantas tratadas con 2,4-D con todas las dosis y plantas tratadas con dicamba con las dos dosis más altas. El daño (35%) 357 DAT se notó solamente en plantas tratadas con la dosis más alta de 2,4-D. Los híbridos franceses mostraron síntomas de daño ligeramente menores al compararse con uvas para vino a 7 y 42 DAT. La reducción en la longitud de la parte aérea de plantas tratadas con 2,4-D a la dosis más alta fue 43, 84, y 16% a 7, 42, y 357 DAT. Glyphosate causó el menor número de síntomas de daño en Riesling al compararse con 2,4-D y dicamba cuando fueron aplicados separadamente o mezclados en tanque con glyphosate. La reducción en la longitud de la parte aérea en Riesling se observó 42 DAT con todas las dosis de 2,4-D, con y sin glyphosate y dicamba, y dicamba más glyphosate con la dosis más alta. Sin embargo, a 357 DAT, no se observó ningún efecto en la longitud de la parte aérea. Deriva de aspersión de 2,4-D y dicamba puede dañar severamente la vid, con daños aumentando al incrementarse la exposición. La combinación de 2,4-D más glyphosate causó mayor daño y mayor reducción en la longitud de la parte aérea de la vid que el glyphosate aplicado solo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Footnotes

Associate Editor for this paper: Jeffrey Derr, Virginia Tech.

References

Literature Cited

Al-Khatib, K, Claassen, MM, Stahlman, PW, Geier, PW, Regehr, DL, Duncan, SR, Heer, WF (2003) Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethypyr and sethoxidim. Weed Technol 17: 261265 Google Scholar
Anonymous (2014) The economic impact of Ohio wine and wine grapes—2012. St. Helena, CA: Frank, Rimerman + Co. LLP. 17 pGoogle Scholar
Association of American Pesticide Control Officials (2005) Pesticide Drift Enforcement Survey Report. Milford, DE: AAPCO. https://aapco.files.wordpress.com/2015/05/2002-2007.pdf. Accessed April 11, 2016Google Scholar
Ball, DA, Parker, R, Colquhoun, J, Dami, I (2014) Preventing Herbicide Drift and Injury to Grapes. Corvallis, OR: Extension Service, Oregon State University Rep. EM8860. 7 pGoogle Scholar
Bhatti, MA, Al-Khatib, K, Parker, R (1996) Wine grape (Vitis vinifera) response to repeated exposure of selected sulfonylurea herbicides and 2,4-D. Weed Technol 10: 951956 Google Scholar
Bode, LE (1987) Spray application technology. Pages 85110 in McWhorter, CG, Gebhardt, MR, eds. Methods of Applying Herbicides. Champaign, IL: Weed Science Society of America Google Scholar
Bondada, BR (2011) Micromorpho-anatomical examination of 2,4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves. J Plant Growth Reg 30: 185198 Google Scholar
Bondada, BR, Hebert, V, Keller, M (2006) Morphology, anatomy, and ultrastructure of grapevine (Vitis vinifera L.) leaves injured by 2,4–D. Page 111 in Proceedings of Botany 2006 . Chico, CA: Botanical Society of AmericaGoogle Scholar
Castro, AJ, Carapito, C, Zorn, N, Magne, C, Leize, E, Van Dorsselaer, A, Clement, C (2005) Proteomis analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot 421: 27832795 Google Scholar
Dami, I, Bordelon, B, Ferree, DC, Brown, M, Ellis, MA, Williams, RN, Doohan, DJ (2005) Midwest Grape Production Guide. Columbus, OH: The Ohio State University Bulletin 919. 158 pGoogle Scholar
Dami, I, Masiunas, JB, Bordelon, B (2002) Herbicide Drift and Injury to Grapes. Carbondale IL: University of Illinois Extension Rep. C1382. 6 pGoogle Scholar
Egan, JF, Barlow, KM, Mortensen, DA (2014) A meta-analysis on the effects of 2,4-D and dicamba drift on soybean and cotton. Weed Sci 62: 193206 Google Scholar
Everitt, JD, Keeling, JW (2007) Weed control and cotton (Gossypium hirsutum) response to preplant applications of dicamba, 2,4–D, and diflufenzopyr plus dicamba. Weed Technol 21: 506510 Google Scholar
Felix, J, Boydston, R, Burke, IC (2011) Potato response to simulated glyphosate drift. Weed Technol 25: 637644 Google Scholar
Flessner, ML, McElroy, JS, Cardoso, LA, Martins, D (2012) Simulated spray drift of aminocyclopyrachlor on cantaloupe, eggplant, and cotton. Weed Technol 26: 724730 Google Scholar
Kruger, GR, Hynes, D, Johnson, B, Doohan, DJ, Weller, SC (2011) Risk of off-site movement of dicamba and 2,4-D or glyphosate to processing and fresh vegetables. Pages 161175 in Proceedings of the Symposium on The New 2,4-D and Dicamba-Tolerant Crops. Columbus, OH: USDA Specialty Crop Research Initiative Google Scholar
Kruger, GR, Johnson, WG, Doohan, DJ, Weller, SC (2012) Dose response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol 26: 256260 CrossRefGoogle Scholar
Marple, ME, Shoup, D, Al-Khatib, K, Peterson, DE (2007) Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol 21: 987992 Google Scholar
Maybank, J, Yoshida, K, Grover, R (1978) Spray drift from agricultural pesticide applications. Air Pollut Control Assoc J 28: 10091014 Google Scholar
Mohseni-Moghadam, M, Doohan, D (2015) Response of bell pepper and broccoli to simulated drift rates of 2, 4-D and dicamba. Weed Technol 29: 226232 Google Scholar
Ogg, AG, Ahmedullah, MA, Wright, GM (1991) Influence of repeated applications of 2,4-D on yield and juice quality of concord grapes. Weed Sci 39: 284295 Google Scholar
Teixeira, MC, Duque, P, Correia, I (2007) Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2, 4–D. Trends Biotechnol 25: 363370 Google Scholar
[USEPA] US Environmental Protection Agency (2014) Introduction to pesticide drift. Washington, DC: U.S. Environmental Protection Agency, http://www2.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift. Accessed June 1, 2015Google Scholar
Volenberg, D (2009) Vineyard IPM Scouting Report for week of June 15, 2009. Sturgeon Bay, WI: University of Wisconsin-Extension Door County and Peninsular Agricultural Research Station. 5 pGoogle Scholar