Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T05:27:01.963Z Has data issue: false hasContentIssue false

Response of Direct-Seeded Dry Bulb Onion to Simulated Glyphosate Drift with Variable Rates and Application Timings

Published online by Cambridge University Press:  20 January 2017

Joel Felix*
Affiliation:
Oregon State University/Malheur Experiment Station, 595 Onion Avenue, Ontario, OR 97914
Rick Boydston
Affiliation:
Agricultural Research Service, United States Department of Agriculture, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350-9687
Ian C. Burke
Affiliation:
Washington State University, 163 Johnson Hall, P.O. Box 646420, Pullman, WA 99164-6420
*
Corresponding author's E-mail: Joel.Felix@oregonstate.edu

Abstract

Field studies were conducted in 2011 at the Malheur Experiment Station, Ontario, OR and Prosser, WA to evaluate the effect of simulated glyphosate drift on direct-seeded dry bulb onion. Glyphosate was applied at 8.6, 25.8, 86, 290, 434, and 860 g ae ha−1 when onion plants were at the flag-, two-, four-, and six-leaf stages. Onion foliar injury was directly related to the glyphosate dose and varied with application timing. Foliar injury at 7 d after treatment (DAT) ranged from 0 to 12% for glyphosate ≤ 25.8 g ha−1. Foliar injury increased at 21 DAT when glyphosate was applied ≥ 25.8 g ha−1 to plants at the flag- and four-leaf stage, and ranged from 24 to 99%. The 50%-injury glyphosate dose at 21 DAT was lowest when onion was treated at the four-leaf and flag stages and was estimated to be 76.8 and 81 g ha−1, respectively. Onion injury severity increased when glyphosate was applied at ≥ 86 g ha−1 and eventually resulted in plant death at 860 g ha−1. Foliar injury was inversely correlated to U.S. no. 1 onion yield. Onions displayed sensitivity to very low glyphosate doses especially at the four-leaf stage. Shikimic acid accumulation increased with the increase in glyphosate dose and was positively correlated with foliar injury and negatively correlated with plant height and onion yield.

Se realizaron estudios de campo en 2011 en la Estación Experimental Malheur, Ontario, OR y Prosser, WA para evaluar el efecto de la deriva simulada de glyphosate sobre el bulbo de cebolla seca de siembra directa. Se aplicó glyphosate a 8.6, 25.8, 86, 290, 434 y 860 g ae ha−1 cuando las plantas de cebolla estaban en los estadios de hoja bandera, dos, cuatro y seis hojas. El daño foliar de la cebolla estuvo directamente relacionado a la dosis de glyphosate y varió con el momento de aplicación. El daño foliar a 7 días después del tratamiento (DAT) varió de 0 a 12% para glyphosate a ≤25.8 g ha−1. El daño foliar incrementó a 21 DAT cuando glyphosate se aplicó a ≥25.8 g ha−1 a plantas en los estados de bandera y cuatro hojas y varió de 24 a 99%. La dosis más baja de 50% de daño de glyphosate a 21 DAT se observó cuando la cebolla fue tratada en los estados de cuatro hojas y hoja bandera y se estimó que fue 76.8 y 81 g ha−1, respectivamente. La severidad del daño de la cebolla aumentó cuando glyphosate se aplicó a ≥86 g ha−1 y eventualmente resultó en la muerte de la planta a 860 g ha−1. El daño foliar estuvo inversamente correlacionado con el rendimiento de cebolla U.S. no. 1. La cebolla mostró sensibilidad a dosis muy bajas de glyphosate especialmente en el estado de cuatro hojas. La acumulación de shikimic acid aumentó con el incremento en la dosis de glyphosate y estuvo positivamente correlacionada con el daño foliar y negativamente correlacionada con la altura de la planta y el rendimiento de la cebolla.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akey, W. C. and Souza Machado, V. 1985. Response of onion (Allium cepa) to oxyfluorfen during early seedling development. Can. J. Plant Sci. 65 :357362.Google Scholar
Al-Khatib, K., Claassen, M. M., Stahlman, P. W., Geier, P. W., Regehr, D. L., Duncan, S. R., and Heer, W. F. 2003. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Technol. 17 :261265.CrossRefGoogle Scholar
Anonymous. 2007. Roundup original Max label 63008G5-36. St. Louis, MO : Monsanto Co. 27 p.Google Scholar
Ashton, F. M., Monaco, T. J. 1991. Weed Science: Principles and Practices, 3rd ed. New York : Wiley.Google Scholar
Berti, A., Dunan, C., Sattin, M., Zanin, G., and Westra, P. 1996. A new approach to determine when to control weeds. Weed Sci. 44 :496503.Google Scholar
Bode, L. E. 1987. Spray application technology. Pages 85110 in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides. Monograph 4. Champaign, IL : Weed Science Society of America.Google Scholar
Brewster, J. L. 2008. Onions and Other Vegetable Alliums. Oxon, UK : CAB International P 29.Google Scholar
Bromilow, R. H. and Chamberlain, K. 2000. The herbicide glyphosate and mobility in phloem. Pest Manag. Sci. 56 :368373.Google Scholar
Burke, I., Thomas, C. W. E., Pline-Srnić, W. A., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2005. Yield and physiological response of flue-cured tobacco to simulated glyphosate drift. Weed Technol. 19 :255260.Google Scholar
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol. 20 :2331.Google Scholar
Eberlein, C. V., Westra, P., Haderlie, L. C., Whitmore, J. C., and Guttieri, M. J. 1997. Herbicide drift and carryover injury in potatoes. Pacific Northwest Extension Publ. 498. 15 p.Google Scholar
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol. 17 :452460.CrossRefGoogle Scholar
Felix, J., Boydston, R., and Burke, I. C. 2011. Potato response to simulated glyphosate drift. Weed Technol. 25 :637644.CrossRefGoogle Scholar
Hurst, H. R. 1982. Cotton (Gossypium hirsutum) response to simulated drift from selected herbicides. Weed Sci. 30 :311315.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50 :773786.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21 :840848.Google Scholar
Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag. Sci. 61 :11611167.Google Scholar
Lassiter, B. R., Burke, I. C., Thomas, W. E., Pline-Srnić, W. A., Jordan, D. L., Wilcut, J. W., and Wilkerson, G. G. 2007. Yield and physiological response of peanut to glyphosate drift. Weed Technol. 21 :954960.Google Scholar
Maybank, J., Yoshida, K., and Grover, R. 1978. Spray drift from agricultural pesticide application. Air Pollut. Control Assoc. J. 28 :10091014.Google Scholar
Norsworthy, J. K., Smith, J. P., and Meister, C. 2007. Tolerance of direct-seeded green onions to herbicides applied before or after crop emergence. Weed Technol. 21 :119123.Google Scholar
Pline, W. A., Price, A. J., Wilcut, J. W., Edmisten, K. L., and Wells, R. 2001. Absorption and translocation of glyphosate in glyphosate-resistant Gossypium hirsutum as influenced by application methods and growth stage. Weed Sci. 49 :460467.Google Scholar
Pline, W. A., Wilcut, J. W., Duke, S. O., Edmisten, K. L., and Wells, R. 2002. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J. Agric. Food Chem. 50 :506512.Google Scholar
R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. Vienna, Austria : R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL: http://www.R-project.org.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Software. 12 (5):URL : http://www.jstatsoft.org/. Accessed: July 19, 2012.Google Scholar
SAS. 2008. Version 9.2. Cary, NC : SAS Institute.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9 :218227.Google Scholar
Shock, C. C., Feibert, E., and Sanders, L. D. 2005. Single-centered and super colossal bulbs from yellow onion cultivars. HortTechnology 15 :399408.CrossRefGoogle Scholar
Shock, C. C., Ishida, J. K., Eldridge, E. P., and Seddigh, M. 2000. Yield of yellow onion cultivars in eastern Oregon and southwestern Idaho. HortTechnology 10 :613620.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12 :527530.Google Scholar
Smid, D. and Hiller, L. K. 1981. Phytotoxicity and translocation of glyphosate in the potato (Solanum tuberosum) prior to tuber initiation. Weed Sci. 29 :218223.Google Scholar
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5 :493498.Google Scholar
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23 :215221.Google Scholar
[USDA] U.S. Department of Agriculture. 1995. United States standards for grades of onions (other than Bermuda-Granex-Grano and Creole Type). Washington, DC : Agricultural Marketing Service, p. 9. http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050312. Accessed: April 27, 2012.Google Scholar
[USDA] Economics, Statistics and Market Information System. 2009. U.S. Onion Statistics (94013). http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396. Accessed: November 28, 2011.Google Scholar
[USDA] USDA-National Agricultural Statistics Service. 2010. USDA/NASS: Agricultural Chemical Usage, 2010 Corn, Organic Corn, Upland Cotton, and Fall Potatoes Summary. USDA-NASS Quick Stats 2.0: http://quickstats.nass.usda.gov/. Accessed: May 30, 2012.Google Scholar
Yates, W. E., Cowden, R. E., and Akesson, N. B. 1985. Drop size spectra from nozzles in high speed airstream. Trans. Am. Soc. Agric. Eng. 28 :405410.Google Scholar