Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T22:07:19.762Z Has data issue: false hasContentIssue false

Resistance to Bensulfuron-Methyl in Water Plantain (Alisma plantago-aquatica) Populations from Chilean Paddy Fields

Published online by Cambridge University Press:  20 January 2017

Rodrigo Figueroa*
Affiliation:
Department of Crop Sciences, School of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Santiago, Chile 7820436
Marlene Gebauer
Affiliation:
Department of Crop Sciences, School of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Santiago, Chile 7820436
Albert Fischer
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Marcelo Kogan
Affiliation:
Department of Crop Sciences, School of Agronomy and Forestry, Pontificia Universidad Católica de Chile, Santiago, Chile 7820436 Agriculture and Environmental Research Center, Universidad de Viña del Mar, 2520000
*
Corresponding author's E-mail: rfe@uc.cl.

Abstract

Bensulfuron-methyl (BSM) has been one of the most widely used herbicides in Chilean rice fields because it controls a wide spectrum of weeds and does not require field drainage for application. However, failures of BSM to control water plantain in rice fields have been noted since 2002. We assessed BSM effects on suspected resistant (CU1 and CU2) and susceptible (AN1) water plantain accessions collected in Chilean rice fields during 2004 and 2005. BSM rates resulting in 50% growth reduction () of CU2 and CU1 plants were 12- and 33-fold higher than for AN1 plants, respectively. Acetolactate synthase (ALS) activity assays in vitro suggested resistance in CU1 and CU2 was due to an ALS enzyme with reduced BSM sensitivity compared to the AN1 biotype. Resistance indices (RI), or ratios of the resistant to susceptible values (BSM rate to inhibit ALS-enzyme activity by 50%), were 266 (CU2/AN1) and > 38,462 (CU1/AN1). This agreed with in vivo ALS activity assays where RI were 224 (CU2/AN1) and > 8,533 (CU1/AN1). Resistance levels detected in whole-plant or in vivo ALS activity assays were orders of magnitude lower than those detected in in vitro ALS activity studies suggesting nontarget site mechanisms may have mitigated BSM toxicity. However, a consistent ranking of BSM sensitivity levels (AN1 > CU2 > CU1) throughout all three types of assays suggests resistance is primarily endowed by low target site sensitivity. We conclude that susceptible and resistant water plantain biotypes coexist in Chilean paddies, and the use of integrated weed management involving herbicides with a different mode of action would be imperative to prevent further evolution of resistance to BSM and possibly cross-resistance to other ALS inhibitors. In vitro ALS-enzyme assays provided the best discrimination of resistance levels between biotypes.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 270:1738117385.CrossRefGoogle ScholarPubMed
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic. Sci 55:507516.3.0.CO;2-G>CrossRefGoogle Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principles of protein dye binding. Anal. Biochem 72:248254.Google Scholar
Calha, I., Machado, C., and Rocha, F. 1995. A survey of herbicide-resistant weeds in Portuguese fields. Pages 223226. in. Proceedings of the International Symposium on Weed and Crop Resistance to Herbicides. Cordoba, Spain: University of Córdoba.Google Scholar
Calha, I., Machado, C., and Rocha, F. 1999. Resistance of Alisma plantago-aquatica to sulfonylurea herbicides in Portuguese rice fields. Hydrobiol 415:289293.Google Scholar
Calha, I., Osuna, M., Serra, C., Moreira, I., DePrado, R., and Rocha, F. 2007. Mechanism of resistance to bensulfuron-methyl in Alisma plantago-aquatica biotypes from Portuguese rice paddy fields. Weed Res 47:231240.Google Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum). II Chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol 95:10361043.CrossRefGoogle Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol 100:19091913.Google Scholar
Corbett, C. A. and Tardiff, F. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manage. Sci 62:584597.CrossRefGoogle ScholarPubMed
Crocker, W. 1907. Germination of seed of water plants. Bot. Gaz 44:375380.CrossRefGoogle Scholar
Deng, F. and Hatzios, K. K. 2002. Characterization of cytochrome P450-mediated bensulfuron-methyl O-demethylation in rice. Pestic. Biochem. Physiol 74:102115.Google Scholar
De Prado, R., Lopez-Martinez, N., and Jiménez-Espinosa, R. 1997. Herbicide-resistant weeds in Europe: agricultural, physiological and biochemical aspects. Pages 1728. in De Prado, R., Jorrin, J., and Garcia-Torres, L., editors. Weed and Crop Resistance to Herbicides. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Pages 159185. in Roe, R. M., Burton, J. D., and Kuhr, R. J., editors. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS.Google Scholar
DiTomaso, J. M. and Healy, E. A. 2003. Aquatic and Riparian Weeds of the West. Oakland, CA: University of California Agriculture and Natural Resources. Pages 137143.Google Scholar
Fischer, A. J., Bayer, D. E., Carriere, M. D., Atch, C. M., and Yim, K. O. 2000. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol 68:156165.CrossRefGoogle Scholar
Forlani, G., Nielsen, E., Landi, P., and Tuberosa, R. 1991. Chlorsulfuron tolerance and acetolactate synthase activity in corn (Zea mays L.) inbred lines. Weed Sci 39:553557.CrossRefGoogle Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol 7:519524.CrossRefGoogle Scholar
Graham, R. J., Pratley, J. E., Slater, P. D., and Banes, P. R. 1996. Herbicide-resistant aquatic weeds, a problem in New South Wales rice crops. Pages 156158. in. Proceedings of the 11th Australian Conference. Victoria, Australia Weed Science Society of Victoria.Google Scholar
Gressel, J. 2000. Molecular biology of weed control. Transgenic Res 9:355382.Google Scholar
Hanson, B. D., Shaner, D. L., Westra, P., and Nissen, S. J. 2006. Response of selected hard red wheat lines to Imazamox as affected by number and location of resistance genes, parental background and growth habit. Crop Sci 46:12061211.CrossRefGoogle Scholar
Heap, I. 2008. Date. The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed: July 03, 2008.Google Scholar
Hwang, I. T., To, Y. K., Kim, T. J., Kim, D. W., and Cho, K. Y. 2000. Structure-activity relationships of acetolactate synthase inhibition among new benzenesulfonylureas in rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli var. oryzicola). Pestic. Biochem. Physiol 68:166172.Google Scholar
Jacobson, A. and Hedrén, M. 2007. Phylogenetic relationships in Alisma (Alismataceae) based on RAPDs, and sequence data from ITS and trn L. Pl. Syst. Evol 265:2744.Google Scholar
Kolkman, J. M., Slabaugh, M. B., Bruniard, J. M., Berry, S., Bushman, B. S., Olungu, C., Maes, N., Abratti, G., Zambelli, A., Miller, J. F., Leon, A., and Knapp, S. J. 2004. Acetohydroxyacid synthase mutation conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor. Appl. Genet 109:11471159.Google Scholar
Kuk, Y. I., Kim, K. H., Kwon, O. D., Lee, D. J., Burgos, N. R., Jung, S., and Guh, J. O. 2003a. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korean. Pest Manage. Sci 60:8594.CrossRefGoogle Scholar
Kuk, Y. I., Jung, H. I., Kwon, O. D., Lee, D. J., Burgos, N. R., and Guh, J. O. 2003b. Sulfonylurea herbicide-resistance Monochoria vaginalis in Korean rice culture. Pest. Manage. Sci 59:949961.Google Scholar
LaRossa, R. A. and Schloss, J. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium . J. Biol. Chem 259:87538757.Google Scholar
McCourt, J., Pang, S., King-Scott, J., Guddat, L., and Duggleby, R. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. PNAS 103:569573.Google Scholar
ODEPA 2007. Oficina de Estudios y Políticas Agrarias, Chilean Ministery of Agriculture. http://www.odepa.gob.cl/odepaweb/jsp/estadisticas/productivas.jsp. Accessed: March 30, 2007.Google Scholar
Ormeño, J. 1983. Survey of weeds associated with rice in Chile. Agric. Téc. (Chile) 43:285287.Google Scholar
Osuna, M. D., Vidotto, F., Fischer, A. J., Bayer, D. E., De Prado, R., and Ferrero, A. 2002. Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis . Pestic. Biochem. Physiol 73:917.CrossRefGoogle Scholar
Powles, S. B. and Holtum, J. A. M., editors. 1994. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers. 3545.Google Scholar
Powles, S., Preston, C., Bryan, I., and Jutsum, A. 1997. Herbicide resistance: impact and management. Adv. in Agric 58:5793.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol 75:827831.Google Scholar
Saari, L. L. 1994. Resistance to acetolactate synthase inhibiting herbicide. Pages 83140. in Powles, S. B. and Holthum, J. A. M., editors. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton: Lewis.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol 97:10441050.Google Scholar
Sattin, M., Berto, D., Zanin, G., and Tabacchi, M. 1999. Resistance to ALS inhibitors of rice in north-western Italy. Pages 783790. in. Brighton Crop Protection Conference: Weeds—Proceedings of an International Conference. Farman, UK: British Crop Protection Council.Google Scholar
Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D. 1999. Statistical tests for hormesis and effective dosages in herbicide dose response. Agron. J. 91:18.CrossRefGoogle Scholar
Seedfeldt, S., Jensen, J., and Fuerst, P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.CrossRefGoogle Scholar
Simpson, D., Stoller, E., and Wax, L. 1995. An in vivo acetolactate synthase assay. Weed Technol 9:1722.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. Pages 2955. in Streibig, J. C. and Kudsk, P., editors. Herbicide Bioassays. Boca Raton: CRC.Google Scholar
Tabacchi, M., Scarabel, L., and Sattin, M. 2004. Herbicide resistance in Italian rice crops. A late developing but fast evolving story. Pages 227238. in Ferrero, A. and Vidotto, F., editors. Proceedings of the Converence Challenges and Opportunities for Sustainable Rice-Based Production Systems. Vercelli, Italy: Edizioni Mercurio.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci 50:700712.Google Scholar
Uchino, A. and Wautanabe, H. 2002. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Linderia spp. Weed Biol. Manage 2:104109.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of wild mustard (Sinapsis arvensis) biotype to ethametsulfuron-methyl. J. Agric. Food Chem 48:29862990.Google Scholar
Vencill, W. K. 2002. Herbicide handbook. 8th ed. Lawrence, KS: Weed Society of America. 493.Google Scholar
Westerfeld, W. 1976. A colorimetric determination of blood acetoin J. Biol. Chem 161:495502.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci 55:8390.Google Scholar
Woodworth, A., Bernasconi, P., Subramanian, M., and Rosen, B. 1996. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:105.Google Scholar