Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T16:04:57.089Z Has data issue: false hasContentIssue false

Relationship between Temperature and Heat Duration on Large Crabgrass (Digitaria sanguinalis), Virginia Buttonweed (Diodia virginiana), and Cock's-Comb Kyllinga (Kyllinga squamulata) Seed Mortality

Published online by Cambridge University Press:  20 January 2017

Jared A. Hoyle*
Affiliation:
Department of Agronomy and Soils, Auburn University, 201 Funchess Hall, Auburn, Alabama 36849
J. Scott McElroy
Affiliation:
Department of Agronomy and Soils, Auburn University, 201 Funchess Hall, Auburn, Alabama 36849
*
Corresponding author's E-mail: jah0040@auburn.edu

Abstract

Thermal heat has been utilized for nonselective weed control methods. These methods are highly variable in application and efficacy. One effective weed–seed-control determining factor is achieving the thermal death point of targeted weed seeds. The thermal death point varies by weed species, temperature, and exposure time. Our objective was to determine the thermal death point of large crabgrass, cock's-comb kyllinga, and Virginia buttonweed at short thermal exposure periods. Studies conducted utilized 5 and 20 s exposure periods for incremental range, 60 to 250 C temperatures. Sigmoid regression curves were used to predict weed seed mortality by temperature and exposure time. A significant interaction between exposure period and temperature occurred for each weed species. Weed species increased in susceptibility to 20 s thermal heat as follows: Virginia buttonweed < cock's-comb kyllinga < large crabgrass. Increasing thermal exposure time from 5 to 20 s reduced thermal temperature by 21 C to achieve 50% mortality for large crabgrass and by 10 C for cock's-comb kyllinga. Virginia buttonweed achieved 50% mortality at 99 C for 5 and 20 s exposure periods. These data indicate that at least 50% weed seed mortality can be achieved at 99 and 103 C for 20 and 5 s exposure periods, respectively, for these weed species.

El calor termal ha sido utilizado en métodos de control no-selectivo de malezas. Estos métodos son altamente variables en aplicación y eficacia. Un factor determinante del control de semillas de malezas es el poder alcanzar el punto de muerte termal de las semillas de las malezas objetivo. El punto de muerte termal varía según la especie de malezas, la temperatura y el tiempo de exposición. Nuestro objetivo fue determinar el punto de muerte termal de Digitaria sanguinalis, Kyllinga squamulata y Diodia virginiana bajo períodos cortos de exposición termal. Los estudios realizados utilizaron períodos de exposición de 5 y 20 s en un rango incremental de temperatura de 60 a 250 C. Curvas de regresión sigmoide fueron usadas para predecir la mortalidad de las semillas de las malezas según la temperatura y el tiempo de exposición. Una interacción significativa ocurrió entre el tiempo de exposición y la temperatura para cada especie. Las especies de malezas incrementaron en susceptibilidad a 20 s de calor termal como se describe a continuación: D. virginiana < K. squamulata < D. sanguinalis. Al incrementarse la exposición termal de 5 a 20 s se redujo la temperatura termal en 21 C para alcanzar 50% de mortalidad de D. sanguinalis y en 10 C para K. squamulata. D. virginiana alcanzó 50% de mortalidad a 99 C en períodos de exposición de 5 y 20 s. Estos datos indican que al menos 50% de la mortalidad de las semillas de malezas puede ser alcanzada a 99 y 103 C para períodos de exposición de 20 y 5 s, respectivamente, para estas especies de malezas.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andreasen, C., Hansen, L., and Streibig, J. C. 1999. The effect of ultraviolet radiation on the fresh weight of some weeds and crops. Weed Technol. 13 :554560.CrossRefGoogle Scholar
Anonymous. 1999. Something for strawberry growers to get steamed up about. The Fruit Grower April, Pages 1112.Google Scholar
Arocena, J. M. and Opio, C. 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113 :116.CrossRefGoogle Scholar
Ascard, J. 1995. Effects of flame weeding on weed species at different developmental stages. Weed Res. 35 :397411.CrossRefGoogle Scholar
Ascard, J. 1998. Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res. 38 :6976.CrossRefGoogle Scholar
Ascard, J., Hatcher, P. E., Melander, B., and Upadhyaya, M. K. 2007. 10 Thermal weed control. Pages 155175 in Upadhyaya, M. K. and Blackshaw, R. E., eds. Non-Chemical Weed Management: Principles, Concepts and Technology. Wallingford, UK : CAB International.CrossRefGoogle Scholar
Barberi, P., Moonen, A. C., Peruzzi, A., Fontanelli, M., and Raffaelli, M. 2009. Weed suppression by soil steaming in combination with activating compounds. Weed Res. 49 :5566.CrossRefGoogle Scholar
Bloemhard, C.M.J., Arts, M. W. M. F., Scheepens, P. C., and Elema, A. G. 1992. Thermal inactivation of weed seeds and tubers during drying of pig manure. Netherlands J. Agric. Sci. 40 :1119.CrossRefGoogle Scholar
Bond, W., Davies, G., and Turner, R. J. 2007. A Review of Thermal Weed Control. Technical Report. Ryton Organic Gardens, Coventry, UK : HDRA. 19 p.Google Scholar
Brain, P. and Cousens, R. 1988. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 29 :9396.CrossRefGoogle Scholar
Brown, D. and Rothery, P. 1993. Models in Biology: Mathematics, Statistics, and Computing. New York : John Wiley and Sons. 688 p.Google Scholar
Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143 :110.CrossRefGoogle ScholarPubMed
Christiansen, M. N. 1978. The physiology of plant tolerance to temperature extremes. Pages 173191 in Jung, G., ed. Crop Tolerance to Suboptimal Land Conditions. Madison, WI : American Society of Agronomy.Google Scholar
Coca, M. A., Almoguera, C., and Jordano, J. 1994. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible function implications. Plant Mol. Biol. 25 :479492.CrossRefGoogle Scholar
Couch, R. and Gangstad, E. O. 1974. Response of water hyacinth to laser radiation. Weed Sci. 22 :450453.CrossRefGoogle Scholar
Couture, L. and Sutton, J. C. 1980. Effect of dry heat treatments on survival of seed borne Bipolaris sorokiniana and germination of barley seeds. Can. Plant Dis. Surv. 60 :5961.Google Scholar
Dahlquist, R. M., Prather, T. S., and Stapleton, J. J. 2007. Time and temperature requirements for weed seed thermal death. Weed Sci. 55 :619625.CrossRefGoogle Scholar
DeBano, L. F., Neary, D. G., and Folliott, P. F. 1998. Fire Effects on Ecosystems. New York : John Wiley and Sons. 131 p.Google Scholar
Diprose, M. F., Benson, F. A., and Willis, A. J. 1984. The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms with special reference to weed control. Bot. Rev. 50 :171223.CrossRefGoogle Scholar
Egley, G. H. 1983. Weed seed and seedling reductions by soil solarization with transparent polyethylene sheets. Weed Sci. 31 :404409.CrossRefGoogle Scholar
Egley, G. H. 1990. High-temperature effects on germination and survival of weed seeds in soil. Weed Sci. 38 :429435.CrossRefGoogle Scholar
Esser, A. F. and Souza, K. A. 1974. Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus . Proc. Natl. Acad. Sci. U. S. A. 71 :41114115.CrossRefGoogle ScholarPubMed
Fisher, R. F. and Binkley, D. 2000. Ecology and Management of Forest Soils. New York : John Wiley and Sons. 489 p.Google Scholar
Giovannini, G., Lucchesi, S., and Giachetti, M. 1988. Effects of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 146 :255261.CrossRefGoogle Scholar
Heisel, T., Schou, J., Andreasen, C., and Christensen, S. 2002. Using laser to measure stem thickness and cut weed stems. Weed Res. 42 :242248.CrossRefGoogle Scholar
Hendricks, S. B. and Taylorson, R. B. 1976. Variation in germination and amino acid leakage of seeds with temperature related to membrane phase change. Plant Physiol. 58 :711.CrossRefGoogle ScholarPubMed
Hendricks, S. B. and Taylorson, R. B. 1979. Dependence of thermal responses of seeds on membrane transitions. Proc. Natl. Acad. Sci. U. S. A. 76 :778781.CrossRefGoogle ScholarPubMed
Herranz, J. M., Ferandis, P., and Martínez-Sánchez, J. J. 1998. Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol. 136 :95103.CrossRefGoogle Scholar
Hopkins, C. Y. 1936. Thermal death point of certain weed seeds. Can. J. Res. 14 :178183.CrossRefGoogle Scholar
Horowitz, M., Regev, Y., and Herzlinger, G. 1983. Solarization for weed control. Weed Sci. 31 :170179.CrossRefGoogle Scholar
Horowitz, M. Y. and Taylorson, R. B. 1983. Effect of high temperatures on inhibition, germination, and thermal death of velvetleaf (Abutilon theophrasti) seeds. Can. J. Bot. 61 :22692276.CrossRefGoogle Scholar
Hoyle, J. A., McElroy, J. S., and Guertal, E. A. 2011b. Soil type and planting depth effect on emergence of large crabgrass (Digitaria sanguinalis), Virginia buttonweed (Diodia virginiana), and cock's-comb kyllinga (Kylllinga squamulata). Page 169 in Proceedings of the 2011 ASA, CSSA, and SSA International Annual Meetings. Madison, WI : American Society of Agronomy.Google Scholar
Hoyle, J. A., McElroy, J. S., and Walker, R. H. 2011a. Altering weed populations prior to turfgrass establishment by solarization, flaming, and dazomet. Page 95 in Proceedings of the 2011 ASA, CSSA, and SSA International Annual Meetings. Madison, WI : American Society of Agronomy.Google Scholar
Imeson, A. C., Verstraten, J. M., van Mulligen, E. J., and Sevink, J. 1992. The effects of fire and water repellence on infiltration and runoff under Mediterranean type forest. CATENA 19 :345361.CrossRefGoogle Scholar
Jury, W. A. and Horton, R., eds. 2004. Soil Physics. 6th ed. Hoken, NJ : John Wiley and Sons. 191 p.Google Scholar
Labouriau, J. G. 1977. Shift of the maximum temperature of germination of Vicia graminea seeds following imbibition of deuterium oxide. J. Therm. Biol. 2 :111114.CrossRefGoogle Scholar
Levitt, J. 1969. Growth and survival of plants at extreme temperature—a unified concept. Pages 395448 in Woolhouse, H. W., ed. Dormancy and Survival. London : Academic Press.Google Scholar
Linke, K.-H. 1994. Effects of soil solarization on arable weeds under Mediterranean conditions: control, lack of response or stimulation. Crop Prot. 13 :115120.CrossRefGoogle Scholar
Mathiassen, S. K., Bak, T., Christensen, S., and Kudsk, P. 2006. The effect of laser treatment as a weed control method. Biosyst. Eng. 95 :497505.Google Scholar
Medina, C. and Cardemil, L. 1993. Prosopis chilensis is a plant highly tolerant to heat shock. Plant Cell Environ. 16 :305310.CrossRefGoogle Scholar
Melander, B. and Jørgensen, M. H. 2005. Soil steaming to reduce intrarow weed seedling emergence. Weed Res. 45 :202211.CrossRefGoogle Scholar
Melander, B. and Kristensen, J. K. 2011. Soil steaming effects on weed seedling emergence under the influence of soil type, soil moisture, soil structure and heat duration. Ann. Appl. Biol. 158 :194203.CrossRefGoogle Scholar
Melander, B., Mathiassen, S. K., Nørremark, M., Kristensen, E. F., Kristensen, J. K., and Kristensen, K. 2011. Physical destruction of the sprouting ability of Elytrigia repens rhizome buds. Weed Res. 51 :469477.CrossRefGoogle Scholar
Moore, R. P. 1985. Handbook on Tetrazolium Testing. Zurich, Switzerland : International Seed Testing Association.Google Scholar
Myers, R. H. 1986. Classical and Modern Regression with Applications. Boston, MA : Duxbury. 488 p.Google Scholar
Ochsner, T. E., Horton, R., and Ren, T. 2001. Simultaneous water content, air-filled porosity, and bulk density measurements with thermal-time domain reflectometry. Soil Sci. Soc. Am. J. 65 :16181622.CrossRefGoogle Scholar
Patten, H. E. 1909. Heat Transference in Soils. Bureau of Soils Bulletin 59. Washington, DC : U.S. Department of Agriculture. 48 p.Google Scholar
Peachey, R. E., Pinkerton, J. N., Ivors, K. L., Miller, M. L., and Moore, L. W. 2001. Effect of soil solarization, cover crops, and metham on field emergence survival and buried annual bluegrass (Poa annua) seeds. Weed Technol. 15 :8188.CrossRefGoogle Scholar
Riemens, M. M. 2003. Effects of heating and light exposure on the emergence, germination, viability and dormancy of weed seeds. Note 250. Wageningen, The Netherlands : Plant Research International B. V. 22 p.Google Scholar
Rubin, B. and Benjamin, A. 1984. Solar heating of the soil: involvement of environmental factors in the weed control process. Weed Sci. 32 :138142.CrossRefGoogle Scholar
SAS. 2011. SAS/STAT User's Guide: Statistics. Version 9.3. Cary, NC : Statistical Analysis Systems Institute. 3344 p.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Furest, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9 :218227.CrossRefGoogle Scholar
Standifer, L. C., Wilson, P. W., and Porche-Sorbet, R. 1984. Effects of solarization on soil weed populations. Weed Sci. 32 :569573.CrossRefGoogle Scholar
Streibig, J. C., Rudemo, M., and Jenson, J. E. 1993. Dose-response curves and statistical analysis models. Pages 3050 in Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. Boca Raton, FL : CRC Press.Google Scholar
Suss, A. and Bachthaler, G. 1968. Preliminary experiments on γ-irradiation of weed seeds. Pages 2024 in Proceedings of the 9th British Weed Control Conference. Croydon, UK : BCPC Publications.Google Scholar
Thompson, A. J., Jones, N. E., and Blair, A. M. 1997. The effect of temperature on viability of imbibed weed seeds. Ann. Appl. Biol. 130 :123134.CrossRefGoogle Scholar
Trotter, K. 1991. Sidlesham steamers. Grower, Nexus Hort. 116 :2425.Google Scholar
van Duin, R.H.A. 1963. The influence of soil management on the temperature wave near the surface. Technical Bulletin 29. Wageningen, The Netherlands : Institute for Land and Water Management Research. 21 p.Google Scholar
van Loenen, M.C.A., Turbett, Y., Mullins, C. E., Feilden, N. E. H., Wilson, M. J., Leifert, C., and Seel, W. E. 2003. Low temperature-short duration steaming of soils kills soil-borne pathogens, nematode pests and weeds. Eur. J. Plant Pathol. 109 :9931002.CrossRefGoogle Scholar
van Rooyen, M. and Winkerton, H. F. 1959. Structural and textural influences on thermal conductivity of soils. Highway Res. Bd. Proc. 38 :576621.Google Scholar
Vidotto, F., De Palo, F., Letey, M., and Ricauda-Aimonino, D. 2011. Effect of short duration exposure to high temperatures on weed seed germination. Page 82 in Proceedings of the 9th EWRS Workshop on Physical and Cultural Weed Control. Samsun, Turkey : European Weed Research Society.Google Scholar
Vigneault, C., Benoit, D. L., and McLaughlin, N. B. 1990. Energy aspects of weed electrocution. Rev. Weed Sci. 5 :1526.Google Scholar
Volger, H. and Santarius, K. A. 1981. Release of membrane proteins in relation to heat injury of spinach chloroplasts. Physiol. Plant. 51 :195200.CrossRefGoogle Scholar
White, G., Bond, B., and Pinel, M. 2000a. Steaming ahead. Grower, Nexus Hort. 134 :1920.Google Scholar
White, G., Bond, B., and Pinel, M. 2000b. Return to the age of steam. HDC News. 61 :1214.Google Scholar
Williams, M. 1999. Direct heat treatment kills soil-borne disease. Farmers Weekly 131 :70.Google Scholar