Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T22:08:52.906Z Has data issue: false hasContentIssue false

Postemergence Weed Control with Glyphosate Plus Flumioxazin Combinations

Published online by Cambridge University Press:  20 January 2017

Glenn Wehtje*
Affiliation:
Auburn University, Auburn, AL 36849
Charles H. Gilliam
Affiliation:
Auburn University, Auburn, AL 36849
Stephen C. Marble
Affiliation:
Auburn University, Auburn, AL 36849
*
Corresponding author's E-mail: wehtjgr@auburn.edu.

Abstract

Glyphosate plus flumioxazin tank mixtures have become popular in the nursery production and landscape maintenance industries in the southeastern United States. Research was conducted to compare the efficacy of such a mixture relative to the components applied alone. Glyphosate, flumioxazin, and glyphosate plus flumioxazin (2 : 1, w/w) were applied POST in container trials to four weed species at a series of rates that ranged from no effect to death. Regression analyses revealed that control data from all three treatment series could be described by the four-parameter, log-logistic model. With respect to glyphosate and flumioxazin applied alone, analysis revealed that across all four species, a lower rate of flumioxazin was required for 90% control than of glyphosate. The rate of the mixture required for 90% control was generally intermediate to the components applied alone and ranged from 0.36 kg ha−1 for hairy bittercress to 1.52 kg ha−1 for eclipta. Glyphosate alone was more cost effective than either flumioxazin alone or the mixture for the POST-applied control of all four species. The popularity of the tank mixture might be the result of flumioxazin-based PRE activity that was not measured in this study.

Se han popularizado las mezclas de glifosato más flumioxazin en las industrias de producción en invernadero y de mantenimiento de jardines en el sudeste de los Estados Unidos. Esta investigación tuvo como objetivo comparar la eficacia de una mezcla de este tipo relativa a los componentes aplicados individualmente. El glifosato, flumioxazin y glifosato más flumioxazin (2 : 1, w/w) fueron post aplicados en maceteros a cuatro especies de malezas a una serie de dosis que oscilaron entre ningún efecto hasta la muerte total. Los análisis de regresión revelaron que la información de control de las tres series de tratamientos podría describirse mediante el modelo log-logístico de 4 parámetros. Con respecto al glifosato y flumioxazin aplicados individualmente, el análisis reveló que para las cuatro especies se requirió una dosis más baja de flumioxazin para obtener un control del 90% en comparación con el glifosato. La dosis de la mezcla requerida para el 90% de control, fue generalmente intermedia a los componentes aplicados individualmente y osciló de 0.36 kg ha−1 para Cardamine hirsuta L. CARHI a 1.52 kg ha−1 para Eclipta prostrata L. ECLAL. El glifosato sin mezclar, fue más efectivo en cuanto a costos que el flumioxazin aplicado individualmente o la mezcla de glifosato-flumioxazin en el control post-aplicado para las cuatro especies. La popularidad de la mezcla puede ser el resultado de la actividad pre del flumioxazin, que no fue medida en este estudio.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2010. Sureguard® 51WG Specimen label. Walnut Creek, CA: Valent U.S.A. 10.Google Scholar
AWIS Weather Services Inc 2010. AWIS Weather and Climate Database. http://www.awis.com.Google Scholar
Böger, P. and Wakabayashi, K. eds. 1999. Peroxidizing herbicides. New York: Springer-Verlag. 405.CrossRefGoogle Scholar
Ferrell, J. A. and Vencill, W. K. 2003. Flumioxazin soil persistence and mineralization in laboratory experiments. J. Agric. Food Chem 51:47194721.Google Scholar
Gressel, L. and Segal, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: the outlook for the future. Pages 325347. in LeBaron, H. M. and Gressel, J. eds. Herbicide Resistance in Plants. New York: J. Wiley.Google Scholar
Hatzios, K. K. and Penner, D. 1985. Interaction of herbicides with other agrochemicals in higher plants. Rev. Weed Sci 163.Google Scholar
Jaworski, E. G. 1972. The mode of action of N-(phosphonomethyl)glycine: inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem 20:11951198.Google Scholar
McCarty, L. B., Everest, J. E., Hall, D. W., Murphy, T. R., and Yelverton, F. 2008. Color atlas of turfgrass weeds. Hoboken, NJ: John Wiley and Sons. 423.Google Scholar
Motulsky, H. and Christopoulos, A. 2004. Fitting models to biological data using nonlinear regression. New York: Oxford University Press. 351.Google Scholar
Radford, A. E., Ahles, H. E., and Bell, C. R. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: University of North Carolina Press. 1183.Google Scholar
Richardson, R. J. and Zandstra, B. H. 2006. Evaluation of flumioxazin and other herbicide for weed control in gladiolus. Weed Technol 20:394398.Google Scholar
Scalla, R. and Matringe, M. 1994. Inhibition of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching herbicides. Rev. Weed Sci 6:103132.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227.CrossRefGoogle Scholar
Senseman, S. A. ed. 2007. Herbicide Handbook 9th ed. Lawrence, KS: Weed Science Society of America. Pp. 200202 and 231–234.Google Scholar
Steinrücken, H. C. and Amrhein, P. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Comm 94:12071212.Google Scholar
Streibig, J. C. and Jensen, J. E. 2000. Actions of herbicides in mixtures. Pages 153180. in Cobb, A. H. and Kirkwood, R. C. eds. Herbicides and Their Mechanisms of Action. Boca Raton, FL: CRC Press.Google Scholar
Tallarida, R. J. 2001. Drug synergism: its detection and applications. Perspectives in Pharmacology 3:865872.Google Scholar
Wehtje, G., Altland, J. E., and Gilliam, C. H. 2008. Interaction of glyphosate and diquat in ready to-use weed control products. Weed Technol 22:472476.Google Scholar
Wehtje, G., Altland, J. E., and Gilliam, C. H. 2009. Interaction of glyphosate and pelargonic acid in ready to-use weed control products. Weed Technol 23:544549.Google Scholar