Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-16T14:47:50.091Z Has data issue: false hasContentIssue false

Phenotypic Plasticity of Blistering Ammannia (Ammannia baccifera) in Competition with Direct-Seeded Rice

Published online by Cambridge University Press:  20 January 2017

Bhagirath Singh Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: b.chauhan@irri.org

Abstract

Crop interference and weed-competitive cultivars are a component of integrated weed management, but their use requires understanding the extent to which rice can interfere with weed growth and how weeds may respond to rice interference. Growth of blistering ammannia was studied in a screen house by growing it alone or with rice seeded in rows (20 cm) or broadcast at the rate of 25 and 75 kg ha−1. The growth of blistering ammannia was similar whether grown with rice seeding rates of 25 or 75 kg ha−1 or with broadcast or row-seeded rice, suggesting that the weed is a weak competitor if rice is planted uniformly. Rice interference greatly reduced the number of blistering ammannia leaves and leaf, stem, total shoot, and root biomass. However, the weed showed the ability to reduce the effects of rice interference by increasing leaf and stem biomass in the upper half of the plant, and increasing specific stem length. At 11 wk after planting, blistering ammannia had 71 to 80% leaf biomass in the upper half of the plant when grown with rice interference compared with only 29% when grown without rice interference. Despite such plasticity, blistering ammannia shoot and root biomass at final harvest decreased by 94 to 99% when grown with rice compared with its biomass without crop interference. These results suggest that blistering ammannia is a poor competitor and uniform rice density could be very effective in suppressing blistering ammannia in direct-seeded rice systems.

La interferencia del cultivo y los cultivares competitivos contra las malezas son componentes del manejo integrado de malezas, pero su uso requiere un entendimiento del nivel al que el arroz puede interferir con el crecimiento de las malezas y cómo las malezas podrían responder a la interferencia del arroz. El crecimiento de Ammannia baccifera fue estudiado en un invernadero creciendo esta maleza sola o con arroz sembrado en líneas (20 cm) o al voleo a una densidad de 25 y 75 kg ha−1. El crecimiento de A. baccifera fue similar, ya fuera creciendo con arroz a densidades de 25 ó 75 kg ha−1 o con arroz sembrado en líneas o al voleo, lo que sugiere que la maleza es débil compitiendo si el arroz es sembrado uniformemente. La interferencia del arroz redujo considerablemente el número de hojas, y la biomasa de la hoja, el tallo, el total del tejido aéreo y de la raíz. Sin embargo, la maleza mostró la habilidad de reducir los efectos de la interferencia del arroz al incrementar la biomasa de la hoja y el tallo en la mitad superior de la planta, además de incrementar el largo específico del tallo. A 11 semanas después de la siembra, A. baccifera tenía 71a 80% biomasa foliar en la mitad superior de la planta cuando creció con interferencia del arroz en comparación con solamente 29% cuando creció sin interferencia. A pesar de esta plasticidad, la biomasa de la parte aérea y de las raíces de A. baccifera, al momento de la cosecha final, se redujo en 94 a 99% cuando creció con el arroz en comparación con su biomasa sin interferencia del cultivo. Estos resultados sugieren que A. baccifera es un competidor pobre y una densidad uniforme del arroz podría ser muy efectiva en suprimir esta maleza en sistemas de arroz de siembra directa.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barrett, S.C.H. and Seaman, D. E. 1980. The weed flora of California rice fields. Aquat. Bot. 9:351376.Google Scholar
Bello, I. A., Owen, M.D.K., and Hatterman-Valent, H. M. 1995. Effect of shade on velvetleaf (Abutilon theophrasti) growth, seed production, and dormancy. Weed Technol. 9:452455.Google Scholar
Bhager, R. M., Bhuiyan, S. I., Moody, K., and Estorninos, L. E. 1999. Effect of water, tillage and herbicide on ecology of weed communities in intensive wet-seeded rice system. Crop Prot. 18:293303.CrossRefGoogle Scholar
Buhler, D. D., Liebman, M., and Obrycki, J. J. 2002. Review: theoretical and practical challenges to an IPM approach to weed management. Weed Sci. 48:274280.Google Scholar
Caton, B. P., Foin, T. C., and Hill, J. E. 1997. Phenotypic plasticity of Ammannia spp. in competition with rice. Weed Res. 37:3338.Google Scholar
Chauhan, B. S. 2012. Weed ecology and weed management strategies for dry-seeded rice in Asia. Weed Technol. 26:113.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105:221262.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011a. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121:226231.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2011b. Phenotypic plasticity of Chinese sprangletop (Leptochloa chinensis) in competition with seeded rice. Weed Technol. 25:652658.CrossRefGoogle Scholar
Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J., and Jat, M. L. 2012a. Productivity and sustainability of the rice–wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv. Agron. 117:315369.Google Scholar
Chauhan, B. S., Pame, A.R.P., and Johnson, D. E. 2011a. Compensatory growth of ludwigia (Ludwigia hyssopifolia) in response to interference of direct-seeded rice. Weed Sci. 59:177181.CrossRefGoogle Scholar
Chauhan, B. S., Singh, R. G., and Mahajan, G. 2012b. Ecology and management of weeds under conservation agriculture: a review. Crop Prot. 38:5765.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011b. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121:105115.Google Scholar
GenStat 8.0. 2005. GenStat Release 8 Reference Manual. Oxford, UK VSN International. 343 p.Google Scholar
Gibson, K. D. and Fischer, A. J. 2001. Relative growth and photosynthetic response of water-seeded rice and Echinochloa oryzoides (Ard.) Fritsch to shade. Int. J. Pest Manag. 47:305309.Google Scholar
Gibson, K. D. and Fischer, A. J. 2004. Competitiveness of rice cultivars as a tool for crop-based weed management. Pages 517537 in Inderjit, , ed. Weed Biology and Management. Dordrecht, the Netherlands Kluwer.Google Scholar
Gibson, K. D., Fischer, A. J., and Foin, T. C. 2001. Shading and the growth and photosynthetic responses of Ammannia coccinnea . Weed Res. 41:5967.Google Scholar
Gibson, K. D., Fischer, A. J., and Foin, T. C. 2004. Compensatory responses of late watergrass (Echinochloa phyllopogon) and rice to resource limitations. Weed Sci. 52:271280.Google Scholar
Holt, J. S. 1995. Plant responses to light: a potential tool for weed management. Weed Sci. 43:474482.CrossRefGoogle Scholar
Moody, K. 1989. Weeds Reported in Rice in South and Southeast Asia. Los Baños, Laguna, Philippines International Rice Research Institute. P 442.Google Scholar
Pandey, S. and Velasco, L. 2005. Trends in crop establishment methods in Asia and research issues. Pages 178181 in Toriyama, K., Heong, K. L., and Hardy, B., eds. Rice Is Life: Scientific Perspectives for the 21st Century. Los Baños, Philippines International Rice Research Instituteand Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.Google Scholar
Patterson, D. T. 1979. The effects of shading on the growth and photosynthetic capacity of itchgrass (Rottboellia exaltata). Weed Sci. 27:549553.Google Scholar
Patterson, D. T. 1995. Effects of environmental stress on weed/crop interactions. Weed Sci. 43:483490.Google Scholar