Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T10:54:22.292Z Has data issue: false hasContentIssue false

Integrating Irrigation, Tillage, and Herbicides for Weed Control in Dry Bean

Published online by Cambridge University Press:  20 January 2017

Robert G. Wilson*
Affiliation:
University of Nebraska-Panhandle Research and Extension Center, Scottsbluff, NE 69361
Gustavo M. Sbatella
Affiliation:
Oregon State University–Central Oregon Agricultural Research Center, Madras, OR 97741
*
Corresponding author's E-mail: rwilson1@unl.edu.

Abstract

Field trials were conducted from 2010 through 2012 to evaluate the integration of three factors: overhead irrigation after planting great northern dry bean; three methods of seedbed preparation: no-tillage, one or two diskings; and eight weed control treatments on dry bean development and weed control. The previous crop each year was corn. Overhead irrigation with 13 mm of water immediately after herbicide application and planting in early June did not improve or reduce herbicide efficacy but where herbicides were not utilized, irrigation increased weed emergence. Soil crusting increased in 2 of 3 yr when soil was disked at a 20-cm depth before planting. Crop injury from herbicides applied PRE increased when soil crusting occurred. No tillage before planting reduced crop injury from herbicides in 2010 and 2011 and weed density in 2012. Dry bean injury was minimal from herbicides applied PRE except for flumioxazin, which reduced crop density in 2011 and 2012. Imazamox plus bentazon applied POST caused early-season dry bean injury in 2 of 3 yr and resulted in a reduction in crop seed yield compared to dimethenamid-P or halosulfuron applied PRE. As producers move away from intensive tillage before planting to reduced tillage or no-tillage production systems, the results of this experiment show that dimethenamid-P, halosulfuron, pendimethalin, and S-metolachlor can be utilized PRE to provide acceptable weed control and crop selectivity. Although flumioxazin applied PRE reduced plant density, Great Northern dry bean yields were not affected by the loss of plant stand.

Se realizaron estudios de campo desde 2010 hasta 2012 para evaluar la integración de tres factores: riego por aspersión después de la siembra de frijol común Great Northern; tres métodos de preparación de la cama de siembra: labranza cero, una, o dos pases de disco; y ocho tratamientos de control de malezas, sobre el desarrollo del frijol y el control de malezas. En cada año, el cultivo previo fue maíz. El riego por aspersión con 13 mm de agua, inmediatamente después de la aplicación de herbicidas y la siembra al inicio de Junio, no mejoró ni redujo la eficacia de los herbicidas, pero donde no se utilizó herbicidas, el riego aumentó la emergencia de malezas. La formación de costras (compactación) en la superficie del suelo aumentó en 2 de 3 años cuando el suelo fue arado con discos a 20 cm de profundidad antes de la siembra. El daño del cultivo producido por herbicidas aplicados PRE aumentó cuando ocurrió la formación de costra en la superficie del suelo. La labranza cero antes de la siembra redujo el daño del cultivo producto de los herbicidas en 2010 y 2011 y también la densidad de malezas en 2012. El daño al frijol fue mínimo con herbicidas aplicados PRE excepto con flumioxazin, que redujo la densidad del cultivo en 2011 y 2012. Imazamox más bentazon aplicados POST causaron daño al frijol temprano en la temporada en 2 de 3 años, lo que resultó en una reducción en el rendimiento de semilla del cultivo al compararse con dimethenamid-P o halosulfuron aplicados PRE. Con el cambio, por parte de los productores de labranza intensiva hacia labranza reducida o cero, los resultados de este experimento muestran que dimethenamid-P, halosulfuron, pendimethalin, y S-metolachlor pueden ser utilizados PRE para brindar un control de malezas aceptable y selectividad en el cultivo. Aunque flumioxazin aplicado PRE redujo la densidad de plantas, los rendimientos del frijol Great Northern no fueron afectados por la pérdida de plantas establecidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, PA, Robinson, EL (1986) Soil reception and activity of acetochlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation. Weed Sci 34:607611 CrossRefGoogle Scholar
Blackshaw, RE, Molnar, LJ, Müendel, HH, Saindon, G, Li, X (2000) Integration of cropping practices and herbicides improves weed management in dry bean (Phaseolus vulgaris). Weed Technol 14:327336 CrossRefGoogle Scholar
Buhler, DD (1992) Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage systems. Weed Sci 40:241248 CrossRefGoogle Scholar
Holmes, RC, Sprague, CL (2013) Row width affects weed management in type II black beans. Weed Technol 27:538546 CrossRefGoogle Scholar
Schwartz, HF, Brick, MA, Harveson, RM, Franc, GD, eds (2004) Dry Bean Production and Integrated Pest Management. 2nd edn. Central High Plains Dry Bean and Beet Group, Colorado State University, University of Nebraska, and University of Wyoming: Bulletin 562A, 167 pp.Google Scholar
Shelton, DP, Jasa, PJ, Smith, JA, and Kanable, R (1995) Estimating percent residue cover NebGuide G95-1132-A, University of Nebraska Cooperative Extension, 4 pp.Google Scholar
Sikkema, PH, Soltani, N, Shropshire, C, Cowan, T (2004) Tolerance of white beans to postemergence broadleaf herbicides. Weed Technol 18:893901 CrossRefGoogle Scholar
Soltani, N, Bowley, S, Sikkema, PH (2005) Responses of dry beans to flumioxazin. Weed Technol 19:351358 CrossRefGoogle Scholar
Soltani, N, Shropshire, C, Sikkema, PH (2006) Effects of post-emergence application of bentazon and fomesafen on eight market classes of dry beans (Phaseolus vulgaris L.). Crop Prot 25:826830 CrossRefGoogle Scholar
Soltani, N, Shropshire, C, Sikkema, PH (2012) Safening effect of bentazon on cloransulam-methyl and halosulfuron-methyl in dry bean. Agric Sci 3:368374 Google Scholar
Stickler, RL, Knake, EL, Hinesly, TD (1969) Soil moisture and effectiveness of preemergence herbicides. Weed Sci 17:257259 CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture (2013) United States Department of Agriculture Economics, Statistics and Market Information System (ESMIS). http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1394. Accessed October 11, 2013Google Scholar
Wilson, RG (2005) Response of dry bean and weeds to fomesafen and fomesafen tank mixtures. Weed Technol 19:201206 CrossRefGoogle Scholar
Wilson, RG, Miller, SD (1991) Dry edible bean (Phaseolus vulgaris) response to imazethapyr. Weed Technol 5:2226 CrossRefGoogle Scholar
Wilson, RG, Wicks, GA, Fenster, CR (1980) Weed control in field beans (Phaseolus vulgaris) in western Nebraska. Weed Sci 28:295299 CrossRefGoogle Scholar
Wyse, DL, Meggit, WF, Penner, D (1976) Factors affecting EPIC injury in navy bean. Weed Sci 24:14 CrossRefGoogle Scholar