Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:03:06.428Z Has data issue: false hasContentIssue false

Impact of Irrigation Volume on PRE Herbicide Activity

Published online by Cambridge University Press:  20 January 2017

Hunter C. Smith
Affiliation:
Department of Agronomy, University of Florida, P.O. Box 11111, Gainesville, FL 32611
Jason A. Ferrell*
Affiliation:
Department of Agronomy, University of Florida, P.O. Box 11111, Gainesville, FL 32611
Theodore M. Webster
Affiliation:
Crop Protection and Management Research Unit, United States Department of Agriculture—Agricultural Research Service, 2747 Davis Road, Tifton, GA 31793-0748
Jose V. Fernandez*
Affiliation:
Department of Agronomy, University of Florida, P.O. Box 11111, Gainesville, FL 32611
Peter J. Dittmar
Affiliation:
Department of Horticulture, University of Florida, 1301 Fifield Hall, Gainesville, FL 32611
Patricio R. Munoz
Affiliation:
Department of Agronomy, University of Florida, P.O. Box 11111, Gainesville, FL 32611
Greg E. MacDonald
Affiliation:
Department of Agronomy, University of Florida, P.O. Box 11111, Gainesville, FL 32611
*
Corresponding author's E-mail: jferrell@ufl.edu
Corresponding author's E-mail: jferrell@ufl.edu

Abstract

The importance of PRE herbicide applications in cotton has increased since the evolution of glyphosate-resistant (GR) Palmer amaranth. Cotton producers are relying on residual herbicides for control of Palmer amaranth, as POST options are limited or ineffective. S-Metolachlor, acetochlor, fomesafen, and dicamba all provide PRE control of Palmer amaranth; however, little is known about the effect of irrigation rate on incorporation and herbicidal efficacy. In 2015, an experiment was conducted on fine sand and loamy sand soils to evaluate the influence of irrigation volume (0.0 to 12.7 mm ha−1) on Palmer amaranth control with PRE herbicides. Irrigation volume after herbicide application was significant for both S-metolachlor and acetochlor. Efficacy of S-metolachlor was greatest in plots receiving 6.4 and 12.7 mm of irrigation where Palmer amaranth biomass was reduced to 4 and 2% of a nontreated control (NTC), respectively, compared with 61% in plots with the 0-mm irrigation treatment. Palmer amaranth control by acetochlor incorporated at 3.2- to 12.7-mm irrigation did not differ but did reduce Palmer amaranth biomass compared with the 1.6-mm irrigation rate. Irrigation volume was not significant for the soil incorporation of fomesafen or dicamba. Across all herbicides, fomesafen-treated plots provided the most consistent control of Palmer amaranth, reducing its biomass to < 3% of NTC at all irrigation rates. Dicamba provided the least and most inconsistent control of Palmer amaranth, producing 17 to 51% of NTC biomass.

En algodón, la importancia de las aplicaciones de herbicidas PRE ha aumentado desde la evolución de Amaranthus palmeri resistente a glyphosate (GR). Los productores de algodón están dependiendo de herbicidas residuales para el control de A. palmeri, ya que las opciones POST son limitadas o inefectivas. S-metolachlor, acetochlor, fomesafen, y dicamba brindan control PRE de A. palmeri. Sin embargo, se conoce poco acerca del efecto de la dosis de riego sobre la incorporación en el suelo y la eficacia del herbicida. En 2015, se realizó un experimento en un suelo arenoso fino y en uno arenoso limoso para evaluar la influencia del volumen de riego (0.0 a 12.7 mm ha−1) sobre el control de A. palmeri con herbicidas PRE. El volumen de riego después de la aplicación del herbicida fue significativo para S-metolachlor y acetochlor. La eficacia de S-metolachlor fue mayor en parcelas que recibieron 6.4 y 12.7 mm de riego donde la biomasa de A. palmeri se redujo a 4 a 2% del testigo sin tratamiento (NTC), respectivamente, comparado con 61% en parcelas con 0 mm de riego. El control de A. palmeri con acetochlor incorporado con riego de 3.2 a 12.7 mm no difirió, pero redujo la biomasa al compararse con la dosis de riego de 1.6 mm. El volumen de riego no fue significativo para la incorporación en el suelo de fomesafen y dicamba. Entre todos los herbicidas, las parcelas tratadas con fomesafen brindaron el control más consistente de A. palmeri, reduciendo la biomasa a < 3% del NTC en todas las dosis de riego. Dicamba brindó el más inconsistente y el menor control A. palmeri, produciendo 17 a 51% de biomasa al compararse con el NTC.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Jason Bond, Mississippi State University.

References

Literature Cited

Baumann, PA, Keeling, JW, Morgan, GD, Smith, JW (1998) Evaluation of fomesafen for weed control in Texas cotton. Proc South Weed Sci 51: 4344 Google Scholar
Beckie, HJ (2006) Herbicide-resistant weeds: management tactics and practices. Weed Technol 20: 793814 Google Scholar
Behrens, R, Lueschen, WE (1979) Dicamba volatility. Weed Sci 27: 486493 CrossRefGoogle Scholar
Bode, LE, Gebhardt, MR (1969) Equipment for incorporation of herbicides. Weed Sci 17: 551555 Google Scholar
Burnside, OC, Lavy, TL (1966) Dissipation of dicamba. Weed Sci 14: 211214 Google Scholar
Cobucci, T, Prates, HT, Falcao, CL, Rezende, MM (1998) Effect of imazamox, fomesafen, and acifluorfen soil residues on rotational crops. Weed Sci 46: 258263 CrossRefGoogle Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) GR Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54: 620626 Google Scholar
Culpepper, AS, Webster, TM, Sosnoskie, LM, York, AC (2010) GR Palmer amaranth in the US. Pages 195212 in Nandula, VK, ed. Glyphosate Resistance: Evolution, Mechanisms, and Management. Hoboken, NJ: John Wiley & Sons CrossRefGoogle Scholar
Dill, GM, CaJacob, CA, Padgette, SR (2008) GR crops: adoption, use, and future considerations. Pest Manag Sci 64: 326331 Google Scholar
Everman, WJ, Clewis, SB, York, AC, Wilcut, JW (2009) Weed control and yield with flumioxasin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol 23: 391397 CrossRefGoogle Scholar
Feng, ZZ, Li, QF, Zhang, J, Huang, X, Lu, P, Li, SP (2012) Microbial degradation of fomesafen by newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway. J Agric Food Chem 60: 71047110 Google Scholar
Friesen, HA (1965) The movement and persistence of dicamba in soil. Weed Sci 13: 3033 Google Scholar
Gianessi, LP (2005) Economic and herbicide use impacts of GR crops. Pest Manag Sci 61: 241245 CrossRefGoogle Scholar
Gossett, BJ, Murdock, EC, Toler, JE (1992) Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol 6: 587591 CrossRefGoogle Scholar
Grover, R (1977) Mobility of dicamba, picloram, and 2,4-D in soil columns. Weed Sci 25: 159162 Google Scholar
Hall, JK, Mumma, RO (1994) Dicamba mobility in conventionally tilled and non-tilled soil. Soil Till Res 30: 317 Google Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org Accessed October 23, 2015Google Scholar
Horak, MJ, Peterson, DE (1995) Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9: 192195 CrossRefGoogle Scholar
Knake, EL, Appleby, AP, Furtick, WR (1967) Soil incorporation and site of uptake of PRE herbicides. Weeds 15: 228232 Google Scholar
Menasseri, S, Koskinen, WC, Yen, PY (2003) Sorption of aged dicamba residues in soil. Pest Manag Sci 60: 297304 Google Scholar
Morgan, GD, Baumann, PA, Chandler, JM (2001) Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum L.) development and yield. Weed Technol 15: 408412 Google Scholar
Mueller, TC, Shaw, DR, Witt, WW (1999) Relative dissipation of acetochlor, alachlor, metolachlor, and SAN 582 from three surface soils. Weed Technol 13: 341346 Google Scholar
Murray, MR, Hall, JK (1989) Sorption–desorption of dicamba and 3,6-dichlorosalicylic acid in soils. J Environ Qual 18: 5157 Google Scholar
Norman, AG, Minarik, CE, Weintraub, RL (1950) Herbicides. Annu Rev Plant Physiol 1: 141168 Google Scholar
Owen, MDK, Zelaya, IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61: 301311 Google Scholar
Price, AJ, Balkcom, KS, Culpepper, SA, Kelton, JA, Nichols, RL, Schomberg, H (2011) GR Palmer amaranth: a threat to conservation tillage. J Soil Water Conserv 66: 265275 Google Scholar
Rowland, MW, Murray, DS, Verhalen, LM (1999) Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum L.). Weed Sci 47: 305309 Google Scholar
Savage, KE, Barrentine, WL (1969) Trifluralin persistence as affected by depth of soil incorporation. Weed Sci 17: 349352 Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. Pp 207335 Google Scholar
Smith, N (2015) University of Georgia, Agriculture and Applied Economics. Crop Comparison Tool. Available at agecon.uga.edu/extension/budgets/cct/index.html. Accessed November 30, 2015Google Scholar
[USDA NASS] U.S. Department of Agriculture National Agricultural Statistics Service Cropland Data Layer (2015) Published Crop-specific Data Layer [Online]. Washington, DC: USDA-NASS. Available at http://nassgeodata.gmu.edu/CropScape/. Accessed October 19, 2015Google Scholar
Walker, A, Brown, PA (1985) The relative persistence in soil of five acetanilide herbicides. Bull Environ Contam Toxicol 34: 143149 Google Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27: 1227 Google Scholar
Webster, TM, Nichols, RL (2012) Changes in the prevalence of weed species in major agronomic crops of the southern United States: 1994/1995 to 2008/2009. Weed Sci 60: 145157 Google Scholar
Weise, AF, Hudspeth, EB Jr. (1968) Subsurface application and shallow incorporation of herbicides on cotton. Weed Sci 16: 494498 CrossRefGoogle Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24: 403410 Google Scholar