Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T20:18:42.929Z Has data issue: false hasContentIssue false

Herbicide Programs for Enhanced Glyphosate-Resistant and Glufosinate-Resistant Cotton (Gossypium hirsutum)

Published online by Cambridge University Press:  20 January 2017

Dilpreet S. Riar*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Griff M. Griffith
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: driar@uark.edu

Abstract

Research was conducted at experimental research stations near Keiser and Marianna (Marianna-A), AR, in 2007, and in a grower's field near Marianna (Marianna-B), AR, in 2008, to compare herbicide programs, including POST application(s) of glyphosate/glufosinate alone or in combination with residual herbicides applied as PRE, mid-POST (MPOST), or layby POST-directed (PD) in enhanced glyphosate- and glufosinate-resistant cotton. Weed species evaluated included Palmer amaranth, pitted morningglory, hemp sesbania, barnyardgrass, and a mixture of large crabgrass and goosegrass. At Marianna-B, AR, the Palmer amaranth population was a mixture of glyphosate-resistant and -susceptible plants. For both cotton cultivars and at all locations, inclusion of S-metolachlor plus fluometuron PRE increased weed control and/or decreased the number of glufosinate or glyphosate applications needed in-season. At Marianna-B, AR, PRE residual herbicides and/or glufosinate were required to control glyphosate-resistant Palmer amaranth. Addition of pyrithiobac to glufosinate or glyphosate did not increase weed control. A layby PD application of flumioxazin plus MSMA was required to increase late-season control of all weed species in POST glufosinate-only programs, but not in POST glyphosate-only programs. None of the programs caused > 5% injury to either cotton cultivar. Seed-cotton yield was similar in all herbicide programs at Keiser, AR, and Marianna-A, AR, except for the POST glyphosate-only program, which yielded less than the PRE followed by POST programs in glyphosate-resistant cotton at Keiser, AR. In general, PRE herbicides did not increase cotton yield but did improve early and late-season control of glyphosate-susceptible and -resistant weeds in both cotton cultivars.

En 2007 se realizó una investigación en una estación experimental cerca de Keiser y Marianna (Marianna-A), AR, y en 2008, en un campo de cultivo cerca de Marianna (Marianna-B), AR, para comparar programas de herbicidas que incluyeron aplicaciones POST de glifosato/glufosinato solo o en combinación con herbicidas residuales aplicados como PRE, MPOST o POST-dirigidas (PD) en banda, en algodón mejorado resistente a glifosato y glufosinato. Las especies de maleza evaluadas incluyeron Amaranthus palmeri, Ipomoea lacunosa, Sesbania herbacea, Echinochloa crus-galli y una mezcla de Digitaria sanguinalis y Eleusine indica. En Marianna-B, la población de Amaranthus palmeri fue una mezcla de plantas resistentes y susceptibles a glifosato. Para ambos cultivares de algodón y en todas los sitios, la inclusión de S-metolaclor más fluometuron PRE incrementó el control de la maleza y/o disminuyó el número de aplicaciones de glufosinato o glifosato necesarias en la estación. En Marianna-B, herbicidas residuales PRE y/o glufosinato se requirieron para controlar Amaranthus palmeri resistente a glifosato. La adición de pirithiobac a glufosinato o glifosato no aumentó el control de la maleza. Una aplicación PD en banda de flumioxazina más MSMA se requirió para incrementar, tarde en la estación, el control de todas las especies de maleza en programas de solo glufosinato POST, pero no en programas de únicamente glifosato POST. Ninguno de los programas causó >5% de daño a cada cultivar de algodón. El rendimiento de semillas de algodón fue similar en todos los programas de herbicida en Keiser y Marianna-A, excepto del programa de solo glifosato POST, que rindió menos que los programas PRE seguidos por POST, en algodón resistente a glifosato en Keiser. En general, los herbicidas PRE no incrementaron el rendimiento de algodón, pero temprano y tarde en la estación, si mejoraron el control de maleza susceptible y resistente a glifosato en ambos cultivares de algodón.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 1999. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 13:308314.Google Scholar
Askew, S. D., Wilcut, J. W., and Cranmer, J. R. 2002. Cotton (Gossypium hirsutum) and weed response to flumioxazin applied preplant and postemergence directed. Weed Technol. 16:184190.Google Scholar
Bellinder, R. R., Lyons, R. E., Scheckler, S. E., and Wilson, H. P. 1987. Cellular alterations resulting from foliar applications of HOE-39866. Weed Sci. 35:2735.Google Scholar
Coetzer, E. and Al-Khatib, K. 2001. Photosynthetic inhibition and ammonium accumulation in Amaranthus palmeri after glufosinate application. Weed Sci. 49:454459.Google Scholar
Coetzer, E., Al-Khatib, K., and Loughin, T. M. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 49:813.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.Google Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.Google Scholar
Devine, M., Duke, S. O., and Fedtke, C. 1993. Inhibition of amino acid biosynthesis. Pages 251294. in Physiology of Herbicide Action. Englewood Cliffs, NJ Prentice Hall. 441 p.Google Scholar
Droge, W., Broer, I., and Puhler, A. 1992. Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta (Berl.) 18:142151.Google Scholar
Duke, S. O. 1990. Overview of herbicide mechanisms of action. Environ Health Perspect. 87:263271.Google Scholar
Everman, W. J., Burke, I. C., Allen, J. R., Collins, J., and Wilcut, J. W. 2007. Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol. 21:695701.Google Scholar
Everman, W. J., Clewis, S. B., York, A. C., and Wilcut, J. W. 2009. Weed control and yield with flumioxazin, fomesafen, and S-metolachlor systems for glufosinate-resistant cotton residual weed management. Weed Technol. 23:391397.Google Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci. 10:328338.Google Scholar
Heap, I. 2011. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: February 21, 2011.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.Google Scholar
Huff, J. A., Reynolds, D. B., Dodds, D. M., and Irby, J. T. 2010. Glyphosate tolerance in enhanced glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 24:289294.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Krutz, L. J., Locke, M. A., and Steinriede, R. W. 2009. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes. J. Environ. Qual. 38:12401247.Google Scholar
Martinez-Ghersa, M. A., Worster, C. A., and Radosevich, S. R. 2003. Concerns a weed scientist might have about herbicide-tolerant crops: a revisitation. Weed Technol. 17:202210.Google Scholar
May, O. L., Culpepper, A. S., Cerny, R. E., et al. 2004. Transgenic cotton with improved resistance to glyphosate herbicide. Crop Sci. 44:234240.Google Scholar
Nida, D. L., Kolacz, K. H., and Buehler, R. E. 1996. Glyphosate-tolerant cotton: genetic characterization and protein expression. J. Agric. Food Chem. 44:19601966.Google Scholar
Norsworthy, J. K., McClelland, M., Griffith, G., Bangarwa, S. K., and Still, J. 2011. Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate-resistant cotton. Weed Technol. 25:613.Google Scholar
Pline, W. A., Viator, R., Wilcut, J. W., Edmisten, K. L., Thomas, J., and Wells, R. 2002. Reproductive abnormalities in glyphosate-resistant cotton caused by lower CP4 EPSPS levels in male reproductive tissues. Weed Sci. 50:384447.Google Scholar
Reddy, K. N. and Boykin, J. C. 2010. Weed control and yield comparisons of twin- and single-row glyphosate-resistant cotton production systems. Weed Technol. 24:95101.Google Scholar
Reddy, K. N. and Norsworthy, J. K. 2010. Glyphosate-resistant crop production systems: impact on weed species shifts. Pages 174177. In Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Hoboken, NJ J. Wiley.Google Scholar
Scroggs, D. M., Miller, D. K., Griffin, J. L., Wilcut, J. W., Blouin, D. C., Stewart, A. M., and Vidrine, P. R. 2007. Effectiveness of preemergence herbicide and postemergence glyphosate programs in second-generation glyphosate-resistant cotton. Weed Technol. 21:877881.Google Scholar
Shaw, D. R. and Arnold, J. C. 2002. Weed control from herbicide combination with glyphosate. Weed Technol. 16:16.Google Scholar
Studebaker, G. 2009. Insecticide Recommendations for Arkansas. 2009. Little Rock, AR Arkansas Division of Agriculture Cooperative Extension Service MP144. 10 p.Google Scholar
[USDA-ERS] U.S. Department of Agriculture–Economic Research Service. 2010. Adoption of Genetically Engineered Crops in U.S.: Extent of Adoption. http://www.ers.usda.gov/Data/BiotechCrops/adoption.htm. Assessed: October 14, 2010.Google Scholar
Viator, R. P., Jost, P. H., Senseman, S. A., and Cothren, J. T. 2004. Effect of glyphosate application timings and methods on glyphosate-resistant cotton. Weed Sci. 52:147151.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar