Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T19:26:30.141Z Has data issue: false hasContentIssue false

Growth Stage Affects Response of Selected Weed Species to Flaming

Published online by Cambridge University Press:  20 January 2017

Stevan Z. Knezevic*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728-2828
Strahinja Stepanovic
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska, Northeast Research and Extension Center, 57905 866 Road, Concord, NE 68728-2828
Avishek Datta
Affiliation:
Agricultural Systems and Engineering, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand
*
Corresponding author's E-mail: sknezevic2@unl.edu.

Abstract

Propane flaming could be an alternative tool for PRE control or suppression of early-emerging weeds in organic and conventional crops. The objective of this study was to test the tolerance of selected early-season weeds to broadcast flaming in no-till systems. Four winter annuals (tansy mustard, henbit, cutleaf evening primrose, and field pennycress), one summer annual (common lambsquarters), and one perennial (dandelion) species were included in the study. Except for dandelion, the response to propane flaming was evaluated at two growth stages. Flaming treatments were applied using an all-terrain-vehicle-mounted flamer moving 4.8 km h−1, and propane pressure was adjusted to deliver doses of 0 (nonflamed control), 22, 34, 48, 67, and 90 kg ha−1. The response of each species to propane doses was described by log-logistic models based on visual ratings of weed control and dry matter reduction. Response to broadcast flaming varied among species and growth stages. Common lambsquarters, tansy mustard, and henbit were more susceptible to flaming than cutleaf evening primrose, field pennycress, and dandelion. On the basis of visual ratings, propane doses between 54 and 62 kg ha−1 effectively controlled (90% control) common lambsquarters at the early growth stage (five-leaf), tansy mustard at both growth stages (nine-leaf and flowering), and henbit (flowering). However, a higher propane dose (> 80 kg ha−1) was necessary to obtain 90% control of common lambsquarters in later growth stage (11-leaf) and early growth stage of henbit (nine-leaf). Cutleaf evening primrose, field pennycress, and dandelion exhibited higher levels of tolerance to broadcast flaming. A 90% control of these species was not achieved even with the highest propane dose (90 kg ha−1) utilized in the study. Results of this study indicate that a single application of broadcast flaming can be an effective tool for controlling tansy mustard, henbit, and common lambsquarters and temporary suppression of cutleaf evening primrose, field pennycress, and dandelion.

La quema con llama de propano puede ser una herramienta alternativa para el control PRE o la supresión de malezas de emergencia temprana en cultivos convencionales y orgánicos. El objetivo de este estudio fue probar la tolerancia de algunas malezas de emergencia temprana a la quema de cobertura total en sistemas de labranza cero. En el estudio se incluyeron cuatro especies anuales de invierno (Descurainia pinnata, Lamium amplexicaule, Oenothera laciniata, y Thlaspi arvense), una anual de verano (Chenopodium album), y una perenne (Taraxacum officinale). A excepción de T. officinale, la respuesta a la quema con llama de propano se evaluó en dos estadios de desarrollo. Los tratamientos de quema se aplicaron usando un quemador montado en un vehículo de todo terreno a una velocidad de 4.8 km h−1, y una presión de propano que fue ajustada para generar dosis de 0 (testigo sin quema), 22, 34, 48, 67, y 90 kg ha−1. La respuesta de cada especie a las dosis de propano fue descrita con modelos log-logísticos basados en evaluaciones visuales de control de malezas y en la reducción de la materia seca. La respuesta a la quema de cobertura total varió según la especie y el estadio de desarrollo. C. album, D. pinnata, y L. amplexicaule fueron más susceptibles a la quema que O. laciniata, T. arvense, y T. officinale. Con base en las evaluaciones visuales, las dosis de propano entre 54 y 62 kg ha−1 controlaron efectivamente (90% de control) C. album en el estadio temprano de desarrollo (cinco hojas), D. pinnata en los estadios de desarrollo de nueve hojas y floración, y L. amplexicaule en el estadio de floración. Sin embargo, se requirió una dosis mayor de propano (>80 kg ha−1) para obtener 90% de control de C. album en el estadio tardío de desarrollo (11 hojas) y de L. amplexicaule en el estadio temprano (nueve hojas). O. laciniata, T. arvense, y T. officinale mostraron altos niveles de tolerancia a la quema con llama. No se alcanzó 90% de control para estas especies inclusive a la dosis más alta de propano (90 kg ha−1) utilizada en este estudio. Los resultados de este estudio indican que una sola aplicación de quema con llama de cobertura total puede ser una herramienta efectiva para el control de D. pinnata, L. amplexicaule, y C. album y para la supresión temporal de O. laciniata, T. arvense, y T. officinale.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J (1994) Dose–response models for flame weeding in relation to plant size and density. Weed Res 34:377385 Google Scholar
Ascard J (1995a) Effects of flame weeding on weed species at different developmental stages. Weed Res 35:397411 Google Scholar
Ascard J (1995b) Thermal Weed Control by Flaming: Biological and Technical Aspects. Ph.D. dissertation. Alnarp, Sweden: Swedish University of Agricultural Sciences. Report 200 Google Scholar
Ascard, J (1998) Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res 38:6976 Google Scholar
Bond, W, Grundy, AC (2001) Nonchemical weed management in organic farming systems. Weed Res 41:383405 Google Scholar
Boyd, NS, Brennan, EB, Fennimore, SA (2006) Stale seedbed techniques for organic vegetable production. Weed Technol 20:10521057 Google Scholar
Bruening CA (2009a) Development of Propane Flaming Equipment for Thermal Weed Control in Agronomic Crops. . Lincoln, NE: The University of Nebraska-Lincoln Google Scholar
Bruening, CA, Gogos, G, Ulloa, SM, Knezevic, SZ (2009b). Performance advantages of flaming hood. Proc North Cent Weed Sci Soc 64:30 [Abstract]Google Scholar
Cisneros, JJ, Zandstra, BH (2008) Flame weeding effects on several weeds species. Weed Technol 22:290295 Google Scholar
Dahlke, BJ, Hayden, TA, Leif, JW, Medlin, CR (2001) Fall application of imazaquin plus glyphosate (premix) for winter annual weeds control in soybeans. Proc North Cent Weed Sci Soc 56:93 [Abstract]Google Scholar
Datta, A, Knezevic, SZ (2013) Flaming as an alternative weed control method for conventional and organic agronomic crop production systems: a review. Adv Agron 118:399428 Google Scholar
Fishel, F, Johnson, B, Peterson, D, Loux, M, Sprague, C (2000) Early Spring Weeds of No-Till Crop Production. Columbia, MO: North Central Regional Extension Publication No. NCR 614. University of Missouri-Columbia, MO http://weeds.cropsci.illinois.edu/extension/Other/NCR614.pdf. Accessed February 13, 2013Google Scholar
Flame Engineering (2007) Red Dragon Liquid Torches. LaCrosse, KS: Flame Engineering Inc. http://www.flameengineering.com/Liquid_Burners.html. Accessed February 6, 2013Google Scholar
Heap, I (2013) International Survey of Herbicide-Resistant Weeds. Most Recent Cases of Herbicide-Resistant Weeds. http://www.weedscience.com/Details/RecentCases.aspx. Accessed March 28, 2013Google Scholar
Knezevic, SZ (2007) Herbicide-tolerant crops: 10 years later. Maydica 52:245250 Google Scholar
Knezevic, SZ, Datta, A, Bruening, C, Gogos, G (2012) Propane-fuelled flame weeding in field corn, soybean, and sunflower crops. Washington, DC: Flame Weeding Manual by Propane Education and Research Council. http://www.agpropane.com/uploadedFiles/Agriculture/Program_Safety_On_The_Farm/Flame%20Weeding%20Training%20Manual_08-27-12_final%20(2).pdf. Accessed February 13, 2013Google Scholar
Knezevic, SZ, Datta, A, Scott, J, Charvat, LD (2009) Adjuvants influenced saflufenacil efficacy on fall-emerging weeds. Weed Technol 23:340345 Google Scholar
Knezevic, SZ, Stepanovic, S, Datta, A, Nedeljkovic, D, Tursun, N (2013) Soybean yield and yield components as influenced by the single and repeated flaming. Crop Prot 50:15 Google Scholar
Knezevic, SZ, Streibig, J, Ritz, C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840848 Google Scholar
Knezevic, SZ, Ulloa, SM (2007) Flaming: potential new tool for weed control in organically grown agronomic crops. J Agric Sci 52:95104 Google Scholar
Krausz, RF, Young, BG, Matthews, JL (2003) Winter annual weed control with fall-applied corn (Zea mays) herbicides. Weed Technol 17:516520 Google Scholar
Owen, MDK and Zelaya, IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 3:301311 Google Scholar
PelletierY, McLeod CD, Bernard G (1995) Description of sub-lethal injuries caused to the Colorado potato beetle by propane flamer treatment. J Econ Entomol 88:12031205 Google Scholar
R Development Core Team. 2006. R:Vienna, Austria: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed February 7, 2013Google Scholar
Rifai, MN, Astatkie, T, Lacko-Bartosova, M, Gadus, J (2002) Effect of two different thermal units and three types of mulch on weeds in apple orchards. J Environ Eng Sci 1:331338 Google Scholar
Rifai, MN, Lacko-Bartosova, M, Puskarova, V (1996) Weed control for organic vegetable farming. Rostl Vyr 42:463466 Google Scholar
Ritz, CJ, Streibig, C (2005) Bioassay analysis using R. J Stat Softw 12:122 Google Scholar
Sandell, L, Bernards, ML, Knezevic, SZ (2008) Fall herbicide applications for winter annual weed control. Lincoln, NE: University of Nebraska-Lincoln Extension. http://weedscience.unl.edu/pdfarticles/08FallHerbApps.pdf. Accessed February 8, 2013Google Scholar
SAS (1999) Version 8.1. Cary, NC: SAS Institute Google Scholar
Sivesind, EC, Leblanc, ML, Cloutier, DC, Seguin, P, Stewart, KA (2009) Weed response to flame weeding at different developmental stages. Weed Technol 23:438443 Google Scholar
Ulloa, SM, Datta, A, Bruening, C, Gogos, G, Arkebauer, TJ, Knezevic, SZ (2012) Weed control and crop tolerance to propane flaming as influenced by the time of day. Crop Prot 31:17 Google Scholar
Ulloa, SM, Datta, A, Bruening, C, Neilson, B, Miller, J, Gogos, G, Knezevic, SZ (2011) Maize response to broadcast flaming at different growth stages: effects on growth, yield and yield components. Eur J Agron 34:1019 Google Scholar
Ulloa, SM, Datta, A, Knezevic, SZ (2010a) Growth stage influenced differential response of foxtail and pigweed species to broadcast flaming. Weed Technol 24:319325 Google Scholar
Ulloa, SM, Datta, A, Knezevic, SZ (2010b) Tolerance of selected weed species to broadcast flaming at different growth stages. Crop Prot 29:13811388 Google Scholar
Van der Vaart, AW (1998) Asymptotic Statistics. Cambridge, UK: Cambridge University Press Google Scholar
Venkatesh, R, Harrison, SK, Riedel, RM (2000) Weed hosts of soybean cyst nematode (Heterodera glycines) in Ohio. Weed Technol 14:156160 Google Scholar
Wszelaki, AL, Doohan, DJ, Alexandrou, A (2007) Weed control and crop quality in cabbage [Brassica oleracea (capitata group)] and tomato (Lycopersicon licopersicum) using a propane flamer. Crop Prot 26:134144 Google Scholar