Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T15:33:08.782Z Has data issue: false hasContentIssue false

Growth, Reproductive Potential, and Control Strategies for Deeproot Sedge (Cyperus entrerianus)

Published online by Cambridge University Press:  20 January 2017

Charles T. Bryson*
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Crop Production Systems Research Unit, P.O. Box 350, Stoneville, MS 38776
Richard Carter
Affiliation:
Biology Department, Valdosta State University, Valdosta, GA 31698-0015
*
Corresponding author's E-mail: charles.bryson@ars.usda.gov

Abstract

Greenhouse, growth chamber, and field studies were conducted at Stoneville, MS, in 2000 to 2008, to determine the growth rate, reproductive and overwintering potential, and control of deeproot sedge. In growth chamber studies, deeproot sedge growth rate (ht) and plant dry wt were greatest at 25/35 C (night/day temperatures), when compared with regimes of 5/15, 15/25, and 20/30 C. Based on the average number of scales (fruiting sites per spikelet), spikelets per inflorescence, and culms per plant, deeproot sedge reproductive potential was 2.6-, 6.2-, and 17.4-fold greater than Surinam, green, and knob sedges, respectively. A single deeproot sedge plant produced an average of 85,500 achenes annually. Mowing at 15-cm ht weekly prevented achene production but did not kill deeproot sedge plants. The average number of inflorescences produced on mowed plants was 1.2 to 4 times greater in 2- and 1-yr-old deeproot sedge plants, respectively, when compared with unmowed plants. Mature deeproot sedge achenes were produced between monthly mowings. In a 3-yr field study, glyphosate, glufosinate, hexazinone, and MSMA provided more than 85% control of deeproot sedge, and above the soil, live deeproot sedge plant dry wt was reduced by 50, 64, 68, 72, 86, and 93% by dicamba, halosulfuron-methyl, MSMA, hexazinone, glufosinate, and glyphosate, respectively. All (100%) deeproot sedge plants 1 yr old or older overwintered at Stoneville, MS, at 33°N latitude.

De 2000 a 2008 se realizaron estudios de invernadero, de cámara de crecimiento y de campo en Stoneville, MS, para determinar la tasa de crecimiento, el potencial reproductivo y de supervivencia durante el invierno y el control de la maleza Cyperus entrerianus. En los estudios de cámara de crecimiento, la tasa de crecimiento (altura) de C. entrerianus y el peso seco de la planta fueron mayores para las temperaturas de 25/35 C (noche/día) cuando se compararon a regímenes de 5/15, 15/25 y 20/30 C. Basado en el número promedio de escamas (sitios de fructificación por fruto), espiguillas inflorescencia−1 y culmos planta−1, el potencial reproductivo de C. entrerianus fue 2.6, 6.2 y 17.4 veces mayor que C. surinamensis, C. virens y C. pseudovegetus, respectivamente. Una sola planta de C. entrerianus produjo un promedio de 85,500 aquenios anualmente. La poda semanal a 15-cm de altura previno la producción de aquenios, pero no mató a las plantas de C. entrerianus. El número promedio de inflorescencias producidas en plantas podadas fue 1.2 a 4 veces mayor en plantas de C. entrerianus de dos y un año, respectivamente, cuando se compararon con plantas sin podar. Se produjeron aquenios maduros entre podas mensuales. En un estudio de campo de 3 años, glifosato, glufosinato, hexazinone y MSMA proporcionaron más del 85% de control de C. entrerianus y el peso seco de la parte aérea de la planta se redujo en 50, 64, 68, 72, 86 y 93% con la aplicación de dicamba, halosulfuron-methyl, MSMA, hexazinone, glufosinato y glifosato, respectivamente. El 100% de las plantas de C. entrerianus de un año de edad o mayores, sobrevivieron al invierno en Stoneville, MS, a 33 grados de latitud norte.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barros, M. 1960. Las Cyperaceas del estado de Santa Catalina [the Ciperáceas of the state of Santa Catherine]. Sellowia 12:181450.Google Scholar
Bryson, C. T. and Carter, R. 1994. Notes on Carex, Cyperus, and Kyllinga (Cyperaceae) in Mississippi with records of eight species previously unreported to the state. SIDA Contrib. Bot. 16:171182.Google Scholar
Bryson, C. T. and Carter, R. 2004. Biology of pathways for invasive weeds. Weed Technol. 18:12161220.Google Scholar
Bryson, C. T. and Carter, R. 2008. The significance of Cyperaceae as weeds. Pages 15101. In Naczi, R. F. C. and Ford, B. A., eds. Sedges: Uses, Diversity, and Systematics of the Cyperaceae. Monogr. Syst. Bot. Mo. Bot. Gard. 108. St. Louis, MO Missouri Botanical Garden.Google Scholar
Bryson, C. T. and Carter, R. 2010. Spread, growth, and reproductive potential for brown flatsedge (Cyperus fuscus). Invasive Plant Sci. Manag. 3:240245.Google Scholar
Bryson, C. T., Carter, R., and Rosen, D. J. 2003. Deeproot sedge (Cyperus entrerianus). Proc. South. Weed Sci. Soc. 56 [CD-ROM].Google Scholar
Bryson, C. T. and DeFelice, M. S. 2009. Weeds of the South. Athens, GA University of Georgia Press. 468 p.Google Scholar
Bryson, C. T., Maddox, V. L., and Carter, R. 2008. Spread of Cuban club-rush (Oxycaryum cubense) in the southeastern United States. Invasive Plant Sci. Manag. 1:326329.Google Scholar
Carter, R. 1990. Cyperus entrerianus (Cyperaceae), an overlooked species in temperate North America. Sida 14:6977.Google Scholar
Carter, R., Baker, W. W., and Morris, M. W. 2009. Contributions to the flora of Georgia, U.S.A. Vulpia 8:154.Google Scholar
Carter, R. and Jones, S. D. 1991. Additional records of Cyperus entrerianus (Cyperaceae) in the United States. Sida 14:615616.Google Scholar
Carter, R. and Bryson, C. T. 1996. Cyperus entrerianus: a little known aggressive sedge in the southeastern United States. Weed Technol. 10:232235.Google Scholar
Carter, R., Mears, R. L., Burks, K. C., and Bryson, C. T. 1996. A report of four exotic Cyperus species new to Florida, U.S.A. Sida 17:275281.Google Scholar
Denton, M. F. 1978. A taxonomic treatment of the Luzulae group of Cyperus . Contrib. Univ. Mich. Herb. 11:197271.Google Scholar
Kükenthal, G. 1936. Cyperaceae-Scirpoidea-Cypereae. Pages 1171. In Engler, A., ed. Das Planzenreich IV.20 (Heft 101). Leipzig, Germabt Engelmann.Google Scholar
Majure, L. C. and Bryson, C. T. 2008. Carex breviculmis (Cyperaceae), new to the flora of North America. J. Bot. Res. Inst. Tex. 2:13811387.Google Scholar
Rosen, D. J., Carter, R., and Bryson, C. T. 2006. The spread of Cyperus entrerianus (Cyperaceae) in the southeastern United States and its invasive potential in bottomland hardwood forests. Southeast. Nat. 5:333344.Google Scholar
Tucker, G. C. 1994. Revision of the Mexican species of Cyperus (Cyperaceae). Syst. Bot. Monogr. 43:1213.CrossRefGoogle Scholar
Tucker, G. C., Marcks, B. G., and Carter, J. R. 2002. Cyperus . Pages 141191. In Ball, P. W., Gandhi, K., Kiger, R. W., Murray, D., Zarucchi, J. L., Reznicek, A. A., and Strother, J. L., eds. Flora of North America. Volume 23. New York Oxford University Press.Google Scholar