Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T06:06:05.573Z Has data issue: false hasContentIssue false

Glufosinate Antagonizes Clethodim Control of Goosegrass (Eleusine indica)

Published online by Cambridge University Press:  20 January 2017

Ian C. Burke
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Shawn D. Askew
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, 435 Old Glade Road, Virginia Tech Box 0330, Blacksburg, VA 24060-0330
Jerry L. Corbett
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut*
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: john_wilcut@ncsu.edu

Abstract

Because of a previously reported antagonism of clethodim activity by other herbicides, greenhouse experiments were conducted to determine goosegrass control with clethodim and glufosinate postemergence alone, in tank mixtures, and as sequential treatments. Herbicide treatments consisted of glufosinate at 0, 290, or 410 g ai/ha and clethodim at 0, 105, or 140 g ai/ha, each applied alone, in all possible combinations of the above application rates, or sequentially. Glufosinate at either rate alone controlled goosegrass at the two- to four-leaf growth stage <44%, and control was less for goosegrass at the one- to two- and four- to six-tiller growth stages. Clethodim controlled two- to four-leaf and one- to two-tiller goosegrass 91 and 99% at application rates of 105 and 140 g/ha, respectively, and controlled four- to six-tiller goosegrass 68 and 83% at application rates of 105 and 140 g ai/ha, respectively. All tank mixtures of glufosinate with clethodim reduced goosegrass control at least 52 percentage points when compared to the control with clethodim alone. Glufosinate at 290 or 410 g/ha when applied sequentially 7 or 14 d prior to clethodim reduced goosegrass control at least 50 percentage points compared to the control obtained with clethodim applied alone. Clethodim at rates of 105 or 140 g/ha when applied 7 or 14 d prior to glufosinate controlled goosegrass equivalent to the control obtained with each respective rate of clethodim applied alone at the two- to four-leaf and one- to two-tiller growth stage. Clethodim should be applied to goosegrass no larger than at the one- to two-tiller growth stage at least 7 d prior to glufosinate application or 14 d after a glufosinate application for effective goosegrass control.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 1999. Cost and weed management with herbicide programs in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 13:308313.CrossRefGoogle Scholar
Bellinder, R. R., Hatzios, K. K., and Wilson, H. P. 1985. Mode of action investigations with the herbicide HOE-39866 and SO-0224. Weed Sci. 33:779785.CrossRefGoogle Scholar
Bellinder, R. R., Lyons, R. E., Scheckler, S. E., and Wilson, H. P. 1987. Cellular alternatives resulting from foliar applications of HOE-39866. Weed Sci. 35:2735.CrossRefGoogle Scholar
Blair, L. K., Dotray, P. A., Keeling, J. W., Gannaway, J. R., Oliver, M. J., and Quisenberry, J. E. 1999. Crop tolerance and weed management in glufosinate tolerant cotton. Proc. South. Weed Sci. Soc. 52:56.Google Scholar
Bradley, P. R., Johnson, W. G., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Economics of weed management in glufosinate-resistant corn (Zea mays L). Weed Technol. 14:495501.CrossRefGoogle Scholar
Burke, I. C., Price, A. J., Wilcut, J. W., Jordan, D. L., Culpepper, A. S., and Tredaway-Ducar, J. 2004. Annual grass control in peanut (Arachis hypogaea) with clethodim and imazapic. Weed Technol. 18:145151.CrossRefGoogle Scholar
Burke, I. C., Wilcut, J. W., and Porterfield, D. 2002. CGA-362622 antagonizes annual grass control with clethodim. Weed Technol. 16:749754.CrossRefGoogle Scholar
Byrd, J. D. Jr. 2000. Report of the 1999 cotton weed loss committee. in Dugger, P. and Richter, D., eds. Proceedings of the Beltwide Cotton Conference. Memphis, TN: National Cotton Council. Pp. 14551458.Google Scholar
Colby, S. R. 1967. Synergistic and antagonistic responses of herbicide combinations. Weed Sci. 15:2022.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.CrossRefGoogle Scholar
Croon, K. A. and Merkle, M. G. 1988. Effects of bentazon, imazaquin, or chlorimuron on haloxyfop or fluazifop-P efficacy. Weed Technol. 2:3640.CrossRefGoogle Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management in glufosinate-resistant corn (Zea mays). Weed Technol. 13:324333.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., and Brownie, C. 1999. Influence of bromoxynil on annual grass control by graminicides. Weed Sci. 47:123128.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Jennings, K. M., and Batts, R. B. 1998. Interaction of bromoxynil and postemergence graminicides on large crabgrass (Digitaria sanguinalis). Weed Technol. 12:554559.CrossRefGoogle Scholar
Dotray, P. A., Baughman, T. A., McCormick, K. M., and Keeling, J. W. 2004. Cotton weed management systems with Ignite. Proc. South. Weed Sci. Soc. 57:29.Google Scholar
Dowler, C. C. 1998. Weed survey—southern states. Proc. South. Weed Sci. Soc. 51:299313.Google Scholar
Frans, R., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society. p. 37.Google Scholar
Gianessi, L. P. and Carpenter, J. E. 2000. Agricultural Biotechnology: Benefits of Transgenic Soybeans. Washington, DC: National Center for Food and Agricultural Policy. 103 p.Google Scholar
Gimenez, A. E., York, A. C., Wilcut, J. W., and Batts, R. 1998. Annual grass control by glyphosate plus bentazon, chlorimuron, fomesafen or imazethapyr mixtures. Weed Technol. 12:134136.CrossRefGoogle Scholar
Hamill, A. S., Knezevic, S. Z., Chandler, K., Sikkema, P. H., Tardif, F. J., Shrestha, A., and Swanton, C. J. 2000. Weed control in glufosinate-resistant corn (Zea mays). Weed Technol. 14:578585.CrossRefGoogle Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4:128133.CrossRefGoogle Scholar
Logusch, E. W., Walker, D. M., McDonald, J. F., and Franz, J. E. 1991. Inhibition of plant glutamine synthases by substituted phosphinothricins. Plant Physiol. 95:10571062.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Mersey, B. G., Hall, C. J., Anderson, D. M., and Swanton, C. J. 1990. Factors affecting the barley and green foxtail. Pestic. Biochem. Physiol. 37:9098.CrossRefGoogle Scholar
Meyers, P. F. and Coble, H. D. 1992. Antagonism of graminicide activity on annual grass species by imazethapyr. Weed Technol. 6:333338.CrossRefGoogle Scholar
Minton, B. W., Kurtz, M. E., and Shaw, D. R. 1989. Barnyardgrass (Echinochloa crus-galli) control with grass and broadleaf herbicide combinations. Weed Sci. 37:223227.CrossRefGoogle Scholar
Paulsgrove, M. D. and Wilcut, J. W. 1999. Weed management in bromoxynil-resistant Gossypium hirsutum . Weed Sci. 47:596601.CrossRefGoogle Scholar
Paulsgrove, M. D. and Wilcut, J. W. 2001. Weed management with pyrithiobac preemergence in bromoxynil-resistant cotton. Weed Sci. 49:567570.CrossRefGoogle Scholar
Rhodes, G. N. Jr. and Coble, H. D. 1984. Influence of application variables on antagonism between sethoxydim and bentazon. Weed Sci. 32:436441.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Steckel, G. J., Wax, L. M., Simmons, F. W., and Phillips, W. H. II. 1997. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol. 11:484488.CrossRefGoogle Scholar
Thomas, W. E., Everman, W. J., and Wilcut, J. W. 2004. Comparison of Roundup-Ready, Liberty Link, and nontransgenic cotton weed management systems. Proc. South. Weed Sci. Soc. 57:53.Google Scholar
Tingle, C. H., Shaw, D. R., and Ellis, J. M. 1996. Weed control programs in glufosinate-resistant soybeans. Proc. South. Weed Sci. Soc. 49:191.Google Scholar
Vidrine, P. R., Reynolds, D. B., and Blouin, D. C. 1995. Grass control in soybean (Glycine max) with graminicides applied alone and in mixtures. Weed Technol. 9:6872.CrossRefGoogle Scholar
Wilcut, J. W., Coble, H. D., York, A. C., and Monks, D. W. 1996. The niche for herbicide-resistant crops in U.S. agriculture. in Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. New York: CRC, Lewis. Pp. 213230.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems for oil seed crops. in Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel-Dekker. Pp. 343400.Google Scholar
Wild, A., Sauer, H., and Ruhle, W. 1987. The effect of phosphinothricin (glufosinate) on photosynthesis. Inhibition of photosynthesis and accumulation of ammonia. Z. Naturforsch. 42:263269.CrossRefGoogle Scholar