Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-06T13:01:10.477Z Has data issue: false hasContentIssue false

Effect of Soil Disturbance on Annual Weed Emergence in the Northeastern United States

Published online by Cambridge University Press:  20 January 2017

Matthew W. Myers*
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
William S. Curran
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
Mark J. Vangessel
Affiliation:
Plant and Soil Sciences Department, University of Delaware, Research and Education Center, Georgetown, DE 19947
Brad A. Majek
Affiliation:
Rutgers Agricultural Research and Extension Center, Rutgers University, Bridgeton, NJ 08032
David A. Mortensen
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
Dennis D. Calvin
Affiliation:
Department of Entomology, The Pennsylvania State University, University Park, PA 16802
Heather D. Karsten
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
Gregory W. Roth
Affiliation:
Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802
*
Corresponding author's E-mail: mwm133@psu.edu

Abstract

A 2-yr experiment evaluated the effect of spring soil disturbance on the periodicity of weed emergence. At four locations across the northeastern United States, emerged weeds, by species, were monitored every 2 wk in both undisturbed plots and plots tilled in the spring with a rotary cultivator. Eight weed species including large crabgrass, giant and yellow foxtail, common lambsquarters, smooth pigweed, eastern black nightshade, common ragweed, and velvetleaf occurred at three or more site-years. Spring soil disturbance either had no effect or reduced total seedling emergence compared with undisturbed soils. Total seedling emergence for large crabgrass, giant foxtail, smooth pigweed, and common ragweed were on average, 1.4 to 2.6 times less with spring soil disturbance, whereas eastern black nightshade and velvetleaf were mostly unaffected by the soil disturbance. The influence of soil disturbance on yellow foxtail and common lambsquarters emergence varied between seasons and locations. Although the total number of emerged seedlings was often affected by the soil disturbance, with the exception of yellow foxtail and common ragweed, the periodicity of emergence was similar across disturbed and undisturbed treatments.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Brenchley, W. E. and Warington, K. 1933. The weed seed population of arable soil. II. Influence of crop, soil, and method of cultivation upon the relative abundance of viable seeds. J. Ecol. 21:103127.Google Scholar
Buhler, D. D. and Daniel, T. C. 1988. Influence of tillage systems on giant foxtail and velvetleaf population and control in corn. Weed Sci. 36:642647.Google Scholar
Buhler, D. D. and Mester, T. C. 1991. Effect of tillage systems on the emergence depth of giant (Setaria faberi) and green foxtail (Setaria viridis). Weed Sci. 39:200203.Google Scholar
Chancellor, R. J. 1964. Emergence of weed seedlings in the field and the effects of different frequencies of cultivation. Proc. Br. Weed Control Conf. 7:599606.Google Scholar
Egley, G. H. and Williams, R. D. 1990. Decline of weed seeds and seedling emergence over five years as affected by soil disturbance. Weed Sci. 38:504510.Google Scholar
Froud-Williams, R. J., Drennan, D. S. H., and Chancellor, R. J. 1983. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 20:187197.Google Scholar
Halford, C., Hamill, A. S., Zhang, J., and Doucet, C. 2001. Critical period of weed control in no-till soybean (Glycine max) and corn (Zea mays). Weed Technol. 15:737744.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.CrossRefGoogle Scholar
Hartzler, R. G. and Roth, G. W. 1993. Effect of prior year's weed control on herbicide effectiveness in corn (Zea mays). Weed Technol. 7:611614.Google Scholar
Mester, T. C. and Buhler, D. D. 1990. Effect of planting depth on velvetleaf (Abutilon theophrasti) seedling development and response to cyanazine. Weed Sci. 38:3438.Google Scholar
Moomaw, R. S. and Burnside, O. C. 1979. Corn residue management and weed control in close-drilled soybeans. Agron. J. 71:7880.Google Scholar
Mulugeta, D. and Stoltenberg, D. E. 1997. Increased weed emergence and seed bank depletion by soil disturbance in a no-tillage system. Weed Sci. 45:234241.Google Scholar
Ogg, A. G. Jr. and Dawson, J. H. 1984. Time of emergence of eight weed species. Weed Sci. 32:327335.Google Scholar
Pollard, F. and Cussans, G. W. 1981. The influence of tillage on the weed flora in a succession of winter cereal crops on a sandy loam soil. Weed Res. 21:185190.Google Scholar
Roberts, H. A. and Feast, P. M. 1972. Fate of seeds of some annual weeds in different depths of cultivated and undisturbed soil. Weed Res. 12:316324.Google Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. J. 1999. Effect of tillage and Zea mays on Chenopodium album emergence and density. Weed Sci. 47:551556.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21:574580.Google Scholar
Wrucke, M. A. and Arnold, W. E. 1985. Weed species distributions as influenced by tillage and herbicides. Weed Sci. 33:853856.Google Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 40:429433.Google Scholar