Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T00:36:23.244Z Has data issue: false hasContentIssue false

Effect of Simulated Aminocyclopyrachlor Drift on Flue-Cured Tobacco

Published online by Cambridge University Press:  20 January 2017

D. F. Lewis*
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
S. T. Hoyle
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
L. R. Fisher
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
F. H. Yelverton
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
R. J. Richardson
Affiliation:
Crop Science Department, P.O. Box 7620, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: dustin_lewis@ncsu.edu

Abstract

Flue-cured tobacco is sensitive to foliar and soil residues of off-target synthetic auxin drift. Aminocyclopyrachlor is a newly developed synthetic auxin herbicide that may be used in right-of-way applications for broadleaf weed and brush control. Aminocyclopyrachlor is considered a reduced-risk alternative in rights-of-way compared with similar compounds because of its low application rate and volatility risk. However, no research is available on the response of field-grown, flue-cured tobacco to aminocyclopyrachlor drift exposure. Research was conducted in 2009 and 2010 at the Border Belt Tobacco Research Station in Whiteville, NC, to determine the response of ‘NC 71’ flue-cured tobacco to five simulated drift rates of aminocyclopyrachlor (0.31, 1.6, 3.1, 15.7, and 31.4 g ae ha−1) and one aminopyralid (6.1 g ae ha−1) simulated drift rates applied pretransplant incorporated, pretransplant unincorporated, 3 wk after transplant, and 6 wk after transplant. All herbicide rates and application timings caused significant visual tobacco injury, ranging from slight to severe with increasing herbicide drift rates. Tobacco plant heights and fresh weights were reduced at all application timings receiving ≥ 15.7 g ha−1 aminocyclopyrachlor and the comparative aminopyralid rate.

El tabaco curado en chimenea es sensible a residuos foliares y de suelo de deriva de aplicaciones de auxinas sintéticas. Aminocyclopyrachlor es una auxina sintética recién desarrollada que puede ser utilizada para controlar malezas de hoja ancha y matorrales en las orillas de los caminos. Se considera como una alternativa de menor riesgo comparada con otros compuestos similares para aplicaciones realizadas en las orillas de los caminos, debido a su baja dosis de aplicación y menor riesgo de volatilidad. Sin embargo, no se dispone de ninguna investigación acerca de la respuesta de este tipo de tabaco a los efectos causados por la exposición por deriva de aminocyclopyrachlor. Se realizó una investigación en 2009 y 2010 en Border Belt Tobacco Research Station en Whiteville, NC para determinar la respuesta del tabaco ‘NC 71’ a cinco concentraciones de deriva simuladas de aminocyclopyrachlor (0.31, 1.6, 3.1, 15.7 y 31.4 g ea ha−1) y una de aminopyralid (6.1 g ea ha−1), aplicadas en pre-transplante incorporado, pre-transplante no incorporado y tres y seis semanas pos-transplante. Todas las dosis de herbicida y momentos de aplicación causaron daño visual significativo al tabaco, variando de ligero a severo con dosis de deriva mayores. Se disminuyó la altura de las plantas y el peso fresco de las hojas en todos los momentos de aplicación con ≥15.7 g ha−1 de aminocyclopyrachlor y una dosis comparativa de aminopyralid.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Milestone® herbicide product label. Dow Publication No. D02-879-003. Indianapolis, IN Dow AgroSciences, http://www.cdms.net/LDat/ld77N009.pdf. Accessed: June 7, 2011.Google Scholar
Anonymous. 2011a. Perspective™ herbicide product label. DuPont Crop Protection. http://www2.dupont.com/Production_Agriculture/en_US/label_msds_info/labels/SL-1396-1.pdf Accessed June 7, 2011.Google Scholar
Anonymous. 2011b. Streamline™ herbicide label. DuPont Publication No. SL-1396-1. Wilmington, DE E. I. DuPont de Nemours, http://www2.dupont.com/Production_Agriculture/en_US/label_msds_info/labels/SL-1386.pdf. Accessed June 7, 2011.Google Scholar
Anonymous. 2011c. Viewpoint™ herbicide label. DuPont Publication No. SL-1397. Wilmington, DE E. I. DuPont de Nemours, http://www2.dupont.com/Production_Agriculture/en_US/label_msds_info/labels/SL-1397.pdf. Accessed June 7, 2011.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two or three factor treatment designs. Agron. J. 81:665672.Google Scholar
Cheng, H. H., ed. Pesticides in the Soil Environment: Processes, Impacts, and Modeling. Volume 2. Madison, WI Soil Science Society of America, Pp. 17.Google Scholar
Claus, J., Turner, R., Armel, G., and Holliday, M. 2008. DuPont aminocyclopyrachlor (proposed common name) (DPX-MAT28/KJM44) herbicide for use in turf, IWC, bare-ground, and brush markets. Pages 654. in Proceedings of the 5th International Weed Science Congress, Volume 1. Fayetteville, AR International Weed Science Society.Google Scholar
Coffey, D. L. and Warren, G. F. 1969. Inactivation of herbicides by activated carbon and other adsorbents. Weed Sci. 17:1619.Google Scholar
Fisher, L. R. 2010. Flue-Cured Tobacco Guide 2010. Raleigh, NC North Carolina Cooperative Extension Service, North Carolina State University AG-187. Pp. 79.Google Scholar
Fung, K. H., Belcher, R. S., and Whitfield, D. M. 1973. Spray damage and residue levels in tobacco treated with various concentrations of 2,4-D at different stages of growth. Aust. J. Exp. Agric. Anim. Husb. 13:328334.Google Scholar
Hutchins, R. 1953. 2,4-D herbicides pose threat to cotton and other susceptible crops. Science 118:782783.Google Scholar
Kates, A. H. 1965. A note on damage to tobacco by lateral movement of picloram. Pages 383396. in Proceedings of the NorthEastern Weed Science Society. Volume 15. Fredericksburg, PA NEWSS.Google Scholar
Kelley, K. B., Wax, L. M., Hager, A. G., and Riechers, D. E. 2005. Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci. 53:101112.Google Scholar
Klingman, G. C. and Guedez, H. 1967. Picloram and its effect on field-grown tobacco. Weeds. 15:142146.Google Scholar
Marple, M. E., Shoup, D., Al-Khatib, K., and Peterson, D. E. 2007. Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol. 21:987992.Google Scholar
McCarty, B., McCullough, P., and McElroy, S. 2010. Characteristics of herbicides for turf and ornamental landscapes. Clemson, SC South Carolina Cooperative Extension Service, Clemson University EC 697. Pp. 17.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004. Determining exposure to auxin-like herbicides, I: quantifying injury to cotton and soybean. Weed Technol. 18:11251134.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 323361.Google Scholar
Sheets, T. J. and Harrell, B. H. Jr. 1986. Effects of low levels of soil-applied picloram on flue-cured tobacco. Raleigh, NC North Carolina Agricultural Research Service, North Carolina State University Technical Bulletin 280.Google Scholar
Sheets, T. J. and Worsham, A. D. 1991. Comparative effects of soil-applied dicamba and picloram on flue-cured tobacco. Raleigh, NC North Carolina Agricultural Research Service, North Carolina State University Technical Bulletin 295.Google Scholar
Smith, W. D. and Fisher, L. R. 2001. Agronomic management practices affecting tobacco quality. Pages 111114. In Smith, W. D. and Fisher, L. R., eds. 2001 Flue- Cured Tobacco Information. Raleigh, NC North Carolina Cooperative Extension Service Publication AG-187.Google Scholar
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5:493498.Google Scholar
SAS Institute. 2004. SAS/STAT User's Guide Release 9.0. Cary, NC SAS Institute. Pp. 26612844.Google Scholar
Strachan, S. D., Casini, M. S., Heldreth, K. M., et al. 2010. Vapor movement of synthetic auxin herbicides: Aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci. 58:103108.Google Scholar
Strek, H. J., Weber, J. B., Shea, P. J., Mrozek, E. Jr., and Overcash, M. R. 1981. Reduction of polychlorinated biphenyl toxicity and uptake of carbon-14 activity by plants through the use of activated carbon. J. Agric. Food Chem. 29:288293.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2010. Ecological Risk Assessment for the Section 3 New Chemical Registration of Aminocyclopyrachlor on Non-Crop Areas and Turf. Washington, DC Office of Prevention, Pesticides and Toxic Substances. Pp. 134.Google Scholar
Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybean to 2,4-D, dicamba, and picloram. Weed Sci. 17:388393.Google Scholar
Yelverton, F. H., Worsham, A. D., and Peedin, G. F. 1992. Activated carbon reduces tobacco (Nicotiana tabacum) injury from soil-applied herbicides. Weed Technol. 6:310–31.Google Scholar