Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:41:49.243Z Has data issue: false hasContentIssue false

Differential Tolerance of Clearfield Rice Cultivars to Imazamox

Published online by Cambridge University Press:  20 January 2017

Jason A. Bond*
Affiliation:
Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
Timothy W. Walker
Affiliation:
Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776
*
Corresponding author's E-mail: jbond@drec.msstate.edu.

Abstract

Field studies were conducted to compare the response of one inbred (‘CL161’) and two hybrid (‘CLXL729’ and ‘CLXL745’) Clearfield (CL) rice cultivars to imazamox. Imazamox was applied at 44 and 88 g ai ha−1 to rice in the panicle initiation (PI) and PI plus 14 d (PI + 14) growth stages and at 44 g ha−1 to rice in the midboot growth stage. Maturity of hybrid CL cultivars was delayed following imazamox at 44 g ha−1 applied at PI + 14 and midboot. Furthermore, imazamox at 44 g ha−1, applied at midboot, delayed maturity of CLXL745 more than CLXL729. Expressed as a percentage of the weed-free control plots, rough rice yields for CLXL729 were 91% following imazamox at 44 g ha−1 applied at PI + 14, 78% following imazamox at 44 g ha−1 applied at midboot, and 77% for imazamox at 88 g ha−1 applied at PI + 14. Rough rice yield for CLXL745 was 77 to 92% of the control following all imazamox treatments. All imazamox treatments reduced CLXL745 rough rice yield compared with CL161. Rough rice yield, pooled across CL cultivar, varied with imazamox treatment between years, and these differences may have been a consequence of lower temperatures and solar radiation in the first year. Hybrid CL cultivars CLXL729 and CLXL745 were less tolerant than was CL161 when imazamox was applied at nonlabeled rates (88 g ha−1) and/or timings (PI + 14 or midboot). Because of variability in rice growth stages and irregularities in imazamox application in commercial fields, inbred CL cultivars should be planted where an imazamox application will likely be required.

Se realizaron estudios de campo para comparar la respuesta de un cultivar endogámico (CL161) y dos cultivares híbridos de arroz Clearfield® (CL), (CLXL729 y CLXL745) al imazamox. Se aplicó imazamox a 44 y 88 g ia ha-1 al arroz en las siguiente etapas de crecimiento: período de iniciación de la panícula (IP) e IP más 14 días (IP+14) y a 44 g ha-1 en la etapa media del llenado del grano. La madurez de los cultivares híbridos CL se retrasó después de la aplicación de imazamox a 44 g ha-1 en las etapas IP+14 y media del llenado del grano. Además, el imazamox a 44 g ha-1 aplicado en la etapa media del llenado del grano retrasó la madurez del CLXL745 más que en el CLXL729. Expresado como porcentaje del rendimiento de las parcelas control libres de malezas, el rendimiento de arroz en bruto para CLXL729 fue 91% al aplicar imazamox a 44 g ha-1 en la etapa IP+14, 78% al aplicar imazamox a 44 g ha-1 en la etapa media del llenado del grano y 77% para imazamox a 88 g ha-1 aplicado a IP+14. El rendimiento de arroz en bruto para CLXL745 fue de 77 a 92% del rendimiento de la parcela de control en todos los tratamientos de imazamox. Todos los tratamientos con imazamox redujeron el rendimiento del CLXL745, comparado con CL161. El rendimiento de arroz en bruto, agrupado por cultivar CL, varió con tratamientos de imazamox entre años y estas diferencias pudieran haber sido una consecuencia de temperaturas más bajas y menor radiación solar en el primer año. Los cultivares híbridos CL, CLXL729 y CLXL745 fueron menos tolerantes que CL161 cuando imazamox se aplicó a dosis no recomendada en la etiqueta (88 g ha) y/o tiempos de aplicación no recomendados (IP+14 o etapa media del llenado del grano). Debido a la variabilidad en las etapas de crecimiento y las irregularidades en la aplicación del imazamox en campos comerciales, los cultivares endogámicos CL deben sembrarse en lugares donde probablemente se requerirá una aplicación de imazamox.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Published with the approval of the Director of the Mississippi Agriculture and Forestry Experiment Station as J-11964.

References

Literature Cited

Adair, C. R., Bollich, C. N., Bowman, D. H., Jodon, N. E., Johnston, T. H., Webb, B. D., and Atkins, J. G. 1972. Rice breeding and testing methods in the United States. Pages. 2575. in. Rice in the United States: Varieties and Production. Washington, DC: U.S. Department of Agriculture–Agricultural Research Service Agricultural Handbook 289. 124 p.Google Scholar
Anonymous 2007. Newpath herbicide label. http://www.greenbook.net Accessed: September 15, 2008.Google Scholar
Anonymous 2008a. Newpath® herbicide product label. BASF Publication No. NVA 2008-04-172-0216. Research Triangle Park, NC: BASF. 12 p. http://www.greenbook.net. Accessed: September 3, 2010.Google Scholar
Anonymous 2008b. 2008 RiceTec hybrid rice management guidelines. Alvin, TX: RiceTec, Inc. http://www.ricetec.com/page.asp?id=152. Accessed: January 10, 2011.Google Scholar
Anonymous 2009. Beyond® herbicide label. BASF Publication No. NVA 2009-04-191-0084. Research Triangle Park, NC: BASF. 22 p. http://www.greenbook.net Accessed: September 3, 2010.Google Scholar
Bond, J. A., Griffin, J. L., Ellis, J. M., Linscombe, S. D., and Williams, B. J. 2006. Corn and rice response to simulated drift of imazethapyr plus imazapyr. Weed Technol 20:113117.Google Scholar
Bond, J. A., Walker, T. W., Webster, E. P., Buehring, N. W., and Harrell, D. L. 2007. Rice cultivar response to penoxsulam. Weed Technol 21:361365.Google Scholar
Buehring, N. W. ed. 2008. Mississippi Rice Grower's Guide. Starkville, MS: Mississippi State University Extension Service. 80 p.Google Scholar
Buehring, N. W. and Bond, J. A. 2008. Rice weed control. Pages 3443. In Buehring, N. W. ed. Mississippi Rice Growers' Guide. Starkville, MS: Mississippi State University Extension Service.Google Scholar
Burgos, N. R., Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008. Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technol 22:200208.Google Scholar
Croughan, T. P. 1994. Application of tissue culture techniques to the development of herbicide-resistant rice. La. Agric 37:2526.Google Scholar
Diarra, A., Smith, R. J. Jr., and Talbert, R. E. 1985. Growth and morphological characteristics of red rice (Oryza sativa) biotypes. Weed Sci 33:310314.Google Scholar
Griffin, J. L. and Baker, J. B. 1990. Tolerance of rice (Oryza sativa) cultivars to fenoxaprop, sethoxydim, and haloxyfop. Weed Sci 38:528531.Google Scholar
Levy, R. J. Jr., Bond, J. A., Webster, E. P., Griffin, J. L., Zhang, W. P., and Linscombe, S. D. 2006. Imidazolinone-tolerant rice response to imazethapyr. Weed Technol 20:389393.Google Scholar
Li, J. and Yuan, L. 2000. Hybrid rice: Genetics, breeding, and seed production. Pages 15158. In Janick, J. ed. Plant Breeding Reviews. Volume 17. Hoboken, NJ: J. Wiley. 352 p.Google Scholar
Light, G. G., Dotray, P. A., and Mahan, J. R. 1999. Thermal dependence of pyrithiobac efficacy in Amaranthus palmeri . Weed Sci 47:644650.Google Scholar
Ottis, B. V., Chandler, J. M., and McCauley, G. N. 2003. Imazethapyr application methods and sequences for imidazolinone-tolerant rice. Weed Technol 17:526533.Google Scholar
Pellerin, K. J., Webster, E. P., Zhang, W., and Blouin, D. C. 2004. Potential use of imazethapyr mixtures in drill-seeded imidazolinone-resistant rice (Oryza sativa) production. Weed Technol 18:10371042.Google Scholar
Pritchard, M. K. and Warren, G. F. 1980. Effect of light on the response of tomato (Lycopersicon esculentum) and two weed species to metribuzin. Weed Sci 28:186189.Google Scholar
Rajguru, S. N., Burgos, N. R., Shivrain, V. K., and Stewart, J. Mc D. 2005. Mutations in the red rice ALS gene associated with resistance to imazethapyr. Weed Sci 53:567577.Google Scholar
Shivrain, V. K., Burgos, N. R., Gealy, D. R., Moldenhauer, K. A. K., and Baquireza, C. J. 2008. Maximum outcrossing rate and genetic compatibility between red rice (Oryza sativa) biotypes and Clearfield rice. Weed Sci 56:807813.Google Scholar
Shivrain, V. K., Burgos, N. R., Rajguru, S. N., Anders, M. M., Moore, J. W., and Sales, M. A. 2007. Gene flow between Clearfield rice and red rice. Crop Prot 26:349356.Google Scholar
Smith, R. J. 1988. Weed thresholds in southern U.S. rice. Weed Technol 2:232241.Google Scholar
Steele, G. L., Chandler, J. M., and McCauley, G. N. 2002. Control of red rice (Oryza sativa) in imidazolinone-tolerant rice (O. sativa). Weed Technol 16:627630.Google Scholar
Wenefrida, I., Croughan, T. P., Utomo, H. S., Meche, M. M., Wang, X. H., and Herrington, J. A. 2004. Herbicide resistance profiles in Clearfield rice. Pages. 178179. in. Proceedings of the 30th Rice Technical Working Group Meeting. Rayne, LA: Rice Technical Working Group, Louisiana State University Agricultural Center, Rice Research Station.Google Scholar
Zhang, W. P. and Webster, E. P. 2002. Shoot and root growth of rice (Oryza sativa) in response to V-10029. Weed Technol 16:768772.Google Scholar
Zhang, W. P., Linscombe, S. D., Webster, E. P., and Oard, J. 2004. Risk assessment and genetic analysis of natural outcrossing in Louisiana commercial fields between Clearfield rice and the weed, red rice. Pages. 195. in. Proceedings of the 30th Rice Technical Working Group Meeting. Rayne, LA: Rice Technical Working Group, Louisiana State University Agricultural Center, Rice Research Station.Google Scholar
Zhang, W. P., Webster, E. P., and Leon, C. T. 2005. Response of rice cultivars to V-10029. Weed Technol 19:307311.Google Scholar