Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T23:34:09.121Z Has data issue: false hasContentIssue false

Differential Competitiveness of Sulfonylurea Resistant and Susceptible Prickly Lettuce (Lactuca serriola)

Published online by Cambridge University Press:  12 June 2017

Mauricio Alcocer-Ruthling
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Donald C. Thill
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Bahman Shafii
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843

Abstract

Repeated use of sulfonylurea herbicides in continuous, no-till winter wheat selected for a herbicide resistant biotype of prickly lettuce in Idaho. Greenhouse experiments were conducted to compare the relative competitiveness and growth rate of sulfonylurea herbicide resistant (R) and susceptible (S) prickly lettuce. The S biotype of prickly lettuce produced 31% more aboveground biomass than the R biotype averaged over all densities. Both biotypes were equally competitive when analyzed for both inter- and intrabiotype competition. In relative growth rate studies, regression analysis showed that the S biotype accumulated biomass 52% faster than the R biotype. The results of this study showed that the S biotype was superior to the R biotype in biomass production and growth rate, but competitiveness appeared to be equal for both biotypes. Other fitness parameters must be measured before fitness differences between biotypes can be determined.

Type
Research
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Anderson, P. C., and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31:994999.Google Scholar
2. Barbour, M. G., Burk, J. H., and Pitts, W. D. 1987. Terrestrial Plant Ecology. Second ed. The Benjamin/Cummings Publ. Co., Inc., Menlo Park, Calif. 440 p.Google Scholar
3. Christoffoleti, P. J., and Westra, P. 1991. Fitness and ecological adaptability of chlorsulfuron resistant and susceptible kochia (Kochia scoparia L.) biotypes. Proc. West. Weed Sci. Soc. 44:81.Google Scholar
4. Conard, S. G., and Radosevich, R. S. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible and resistant biotypes to atrazine. J. Appl. Ecol. 16:171177.Google Scholar
5. Gressel, J., and Segel, L. A. 1978. The paucity of plants evolving genetic resistant to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
6. Gressel, J., and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:106198.Google Scholar
7. Hartl, D. L. 1980. Principles of Population Genetics. Sinauer Assoc. Sunderland, Mass. 488 p.Google Scholar
8. Holt, J. S. 1990. Fitness and ecological adaptability of herbicide-resistant biotypes. p. 419429 in Green, M. B., LeBaron, H. M., and Moberg, W. K., ed. Managing Resistance to Agrochemicals from Fundamental Research to Practical Strategies. ACS Symp. Ser. 421.CrossRefGoogle Scholar
9. Holt, J. S., and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31:112119.Google Scholar
10. Jacobs, B. F., Duesing, J. H., Antonovics, J., and Paterson, D. T. 1988. Growth performance of triazine-resistant and -susceptible biotypes of Solanum nigrum over a range of temperatures. Can. J. Bot. 66:847850.CrossRefGoogle Scholar
11. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
12. Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4:787790.Google Scholar
13. Maxwell, B. D., Rouch, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
14. Mazur, B. J., and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:441470.CrossRefGoogle Scholar
15. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 14:169172.Google Scholar
16. Radosevich, S. R. 1977. Mechanisms of atrazine resistance in lambsquarters and pigweed. Weed Sci. 25:316318.CrossRefGoogle Scholar
17. Radosevich, S. R. 1987. Methods to study interactions among crops and weeds. Weed Technol. 1:190198.CrossRefGoogle Scholar
18. Rejmanek, M., Robinson, G. R., and Rejmankova, E. 1989. Weed-crop competition: Experimental designs and models for data analysis. Weed Sci. 37:276284.Google Scholar
19. SAS Institute. 1985. SAS/STAT™ Guide for Personal Computers, Version 6 Ed. SAS Institute Inc., Cary, N.C. 378 p.Google Scholar
20. Smith, J. K., Schloss, J. V., and Mazur, B. 1989. Functional expression of plant acetolactate synthase genes in Escherichia coli . Proc. Natl. Acad. Sci. 86:41794183.Google Scholar
21. Spitters, C.J.T. 1983. An alternative approach to analysis of mixed cropping experiments. I. Estimation of competition effects. Neth. J. Agric. Sci. 31:111.Google Scholar
22. Steel, R.G.D., and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill Tokyo, Japan. p. 217.Google Scholar
23. Swanson, E. B., Herrgessell, M. J., Arnoldo, M., Sippell, D. W., and Wong, R.S.C. 1989. Microscope mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78:525530.Google Scholar
24. Warwick, S. I., and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodium album and C. strictum . Can. J. Bot. 59:689693.CrossRefGoogle Scholar