Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T03:59:52.177Z Has data issue: false hasContentIssue false

Cross-Resistance of Japanese Foxtail (Alopecurus japonicus) to ACCase Inhibitors in China

Published online by Cambridge University Press:  20 January 2017

Hailan Cui
Affiliation:
Institute of Plant Protection, Key Laboratory of Weed and Rodent Biology and Management, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China
Cangyue Wang
Affiliation:
Institute of Plant Protection, Key Laboratory of Weed and Rodent Biology and Management, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China
Yujiao Han
Affiliation:
Institute of Plant Protection, Key Laboratory of Weed and Rodent Biology and Management, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China
Liang Chen
Affiliation:
Dow AgroSciences (China) Co., Ltd., 936 Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai 201203
Xiangju Li*
Affiliation:
Institute of Plant Protection, Key Laboratory of Weed and Rodent Biology and Management, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China
*
Corresponding author's E-mail: xjli@ippcaas.cn or xiangjuli@sohu.com.

Abstract

The increasing use of ACCase-inhibiting herbicides has resulted in evolved resistance in key grass weeds infesting cereal cropping systems worldwide. Japanese foxtail is one of the most important grass weed species in wheat in China. Most populations have evolved resistance to fenoxaprop-p-ethyl, which is one of the most common ACCase-inhibiting herbicides in wheat. The seeds of two Japanese foxtail populations were collected from wheat fields where farmers complained that control could not be effectively obtained with fenoxaprop-p-ethyl. Seeds from one susceptible population were collected from an area along a roadside where ACCase inhibitors had not been used to be used for validating cross-resistance and elucidating the mechanism of resistance. The experimental results showed that the two populations, Aloja-JS10-R1 and Aloja-JS10-R2, expressed high resistance to fenoxaprop-p-ethyl, with resistance indexes (RIs) of 29.2 and 27.9. These populations also expressed high cross-resistance to clodinafop-propargyl with RIs of 12.8 and 14.7, and moderate cross-resistance to clethodim and pinoxaden with RIs ranging from 2.6 to 11.4. Comparison of the ACCase carboxyl-transferase (CT) domain sequences of the susceptible and resistant populations with blackgrass revealed that tryptophan at position 2027 of the ACCase gene was substituted by cysteine in population Aloja-JS10-R1, and isoleucine at position 1781 of the ACCase gene was substituted by leucine in populations Aloja-JS10-R2. The study confirmed Japanese foxtail resistance to the ACCase inhibitor fenoxafop-p-ethyl, cross-resistance to other ACCase inhibitors, and the resistance mechanism being conferred by specific ACCase point mutations at amino acid position 1781 and 2027.

El creciente uso de herbicidas inhibidores de ACCase ha resultado en la evolución de resistencia en especies de malezas gramíneas clave en sistemas de cultivos de cereales en todo el mundo. Alopecurus japonicus es una de las malezas gramíneas más importantes en trigo en China. La mayoría de sus poblaciones han evolucionado resistencia a fenoxaprop-p-ethyl, el cual es uno de los herbicidas inhibidores de ACCase más comunes en trigo. Semillas de dos poblaciones de A. japonicus fueron colectadas en campos de trigo donde los productores se habían quejado que no se había podido alcanzar un control efectivo con fenoxaprop-p-ethyl. También se colectaron semillas de una población susceptible en un área a la orilla de la carretera donde no se había usado inhibidores de ACCase, para validar la resistencia cruzada y elucidar el mecanismo de resistencia. Los resultados experimentales mostraron que las dos poblaciones, Aloja-JS10-R1 y Aloja-JS10-R2, expresaron un alto nivel de resistencia a fenoxaprop-p-ethyl, con índices de resistencia (RIs) de 29.2 y 27.9. Estas poblaciones también expresaron una alta resistencia cruzada a clodinafop-propargyl con RIs de 12.8 y 14.7, y resistencia cruzada moderada a clethodim y pinoxaden con RIs que variaron entre 2.6 y 11.4. La comparación de la secuencia del dominio carboxyl-transferase (CT) de ACCase de las poblaciones susceptibles y resistentes con Alopecurus myosuroides reveló que tryptophan en la posición 2027 del gen ACCase fue sustituido por cysteine en la poblacón Aloja-JS10R1, y isoleucine en la posición 1781 del gene ACCase fue sustituido por leucine en la población Aloja-JS10-R2. Este estudio confirmó la resistencia de A. japonicus al inhibidor de ACCase fenoxaprop-p-ethyl, la resistencia cruzada a otros inhibidores de ACCase, y el mecanismo de resistencia, el cual se debe a mutaciones puntuales en las posiciones de los amino ácidos 1781 y 2027 del gen ACCase.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alban, C, Baldet, P, Douce, R (1994) Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J 300:557565 CrossRefGoogle ScholarPubMed
Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Neve, P (2014) Modeling the simultaneous evolution of resistance to ALS- and ACCase-inhibiting herbicides in barnyardgrass (Echinochloa crus-galli) in Clearfield® rice. Weed Technol 28:89103 Google Scholar
Burton, JD, Gronwald, JW, Somers, DA, Gegenbach, BG, Wyse, DL (1989) Inhibition of corn acetyl-coA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic Biochem Physiol 34:7685 CrossRefGoogle Scholar
Christopher, JT, Holtum, JAM (2000) Dicotyledons lacking the multi-subunit form of acetyl coenzyme A carboxylase may be restricted to the family Geraniaceae . Aust J Plant Physiol 27:845850 Google Scholar
Cummins, I, Cole, DJ, Edwards, R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285292 Google Scholar
Daniel, AB, Sandra, MF, Larry, HB (2007) ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci 55:9194 Google Scholar
Délye, C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746 Google Scholar
Délye, C, Matéjicek, AGJ (2002) PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag Sci 58:474478 Google Scholar
Délye, C, Matéjicek, A, Michel, S (2008) Cross-resistance pattern to ACCase-inhibiting herbicide conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass) re-examined at the recommended herbicide field rate. Pest Manag Sci 64:11791186 Google Scholar
Délye, C, Menchari, Y, Michel, S, Darmency, H (2004) Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiol 136:39203932 Google Scholar
Délye, C, Zhang, XQ, Michel, S, Matéjicek, A, Powles, SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137:794806 Google Scholar
Gornicki, P, Faris, J, King, I, Podkowinski, J, Gill, B, Haselkorn, R (1997) Plastidlocalized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci USA 94:1417914184 Google Scholar
Heap, IM (2014) International Survey of Herbicide-Resistant Weeds. http://www.weedscience.com. Accessed September 20, 2014Google Scholar
Hochberg, O, Sibony, M, Rubin, B (2009) The response of ACCase-resistant Phalaris paradoxa populations involves two different target site mutations. Weed Res 49:3746 Google Scholar
Hofer, U, Muehlebach, M, Hole, S, Zoschke, A (2006) Pinoxaden for broad spectrum grass weed management in cereal crops. J Plant Dis Prot 113:989995 Google Scholar
Incledon, BJ, Hal, CJ (1997) Acetyl-coenzyme A carboxylase: quaternary structure and inhibition by graminicidal herbicides. Pestic Biochem Physiol 57:255271 Google Scholar
[ICAMA] Institute for Control of Agrichemicals, Ministry of Agriculture (1992) The Bulletins of the Pesticide Registration in China. Beijing, China: China Agricultural Press. [In Chinese]Google Scholar
Kaundun, SS (2010) An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanisms confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population. Pest Manag Sci 66:12491256 Google Scholar
Kaundun, SS, Windass, JD (2006) Derived cleaved amplified polymorphic sequence, a simple method to detect a key point mutation conferring acetyl CoA carboxylase inhibitor herbicide resistance in grass weeds. Weed Res 46:3439.Google Scholar
Kotoula-Syka, E, Tal, A, Rubin, B (2000) Diclofop-resistant Lolium rigidum from northern Greece with cross-resistance to ACCase inhibitor sand multiple resistance to chlorsulfuron. Pest Manag Sci 56:10541058 Google Scholar
Kusk, YI, Burgos, NR, Scott, RC (2008) Resistance profile of diclofop-resistant Italian ryegrass (Lolium multiflorum) to ACCase- and ALS-inhibiting herbicides in Arkansas, USA. Weed Sci 56:614623 Google Scholar
Li, YW, Mei, CS, Li, YF, Tang, RS, Zhai, QK, Liu, NZ (1996) Studies on resistance of weeds Backmannia syzigachne and Alopecurus japonicum to the herbicide chlorsulfuron. Jiangsu J Agric Sci 12:3438 [In Chinese]Google Scholar
Menchari, Y, Chauvel, B, Darmency, H, Délye, C (2008) Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides . J Appl Ecol 45:939947 Google Scholar
Moss, SR, Cocker, KM, Brown, AC, Hall, L, Field, LM (2003) Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Manag Sci 59:190201 Google Scholar
Neff, MM, Neff, JD, Chory, J, Pepper, AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387392 Google Scholar
Neff, MM, Turk, E, Kalishman, M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613615 Google Scholar
Nikolau, BJ, Ohlrogge, JB, Wurtele, ES (2003) Plant biotin–containing carboxylases. Arch Biochem Biophys 414:211222 Google Scholar
Petit, C, Bay, G, Pernin, F, Délye, C (2010) Prevalence of cross or multiple resistance to the acetylcoenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag Sci 66:168177 Google Scholar
Prado, JL, Osuna, MD, Heredia, A, Prado, R (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides. J Agric Food Chem 53:21852191 Google Scholar
Preston, C, Tardif, FJ, Christopher, JT, Powles, SB (1996) Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic Biochem Physiol 54:123134 Google Scholar
Price, LJ, Herbert, D, Moss, SR, Cole, DJ, Harwood, JL (2003) Graminicide insensitivity correlates with herbicide-binding co-operativity on acetyl-CoA carboxylase isoforms. Biochem J 375:415423 Google Scholar
Scarabel, L, Panozzo, S, Varottob, S, Sattin, M (2011) Allelic variation of the ACCase gene and response to ACCase-inhibiting herbicides in pinoxaden-resistant Lolium spp. Pest Manag Sci 67:932941 Google Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log–logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227 Google Scholar
Stephen, BP, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347 Google Scholar
Tal, A, Rubin, B (2004) Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum . Pest Manag Sci 60:10131018.Google Scholar
Tang, HW, Li, J, Dong, LY, Dong, AB, Lu, B, Zhu, XD (2012) Molecular bases for resistance to acetyl-coenzyme A carboxylase inhibitor in Japanese foxtail (Alopecurus japonicus). Pestic Biochem Physiol 68:12411247 Google Scholar
Tang, W, Zhou, FY, Chen, J, Zhou, XG (2014) Resistance to ACCase-inhibiting herbicides in an Asia Minor bluegrass (Polypogon fugax) population in China. Pest Biochem Physiol 108:1620 Google Scholar
White, GM, Moss, SR, Karp, A (2005) Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum . Weed Res 45:440448 Google Scholar
Yang, CH, Dong, LY, Jun, L, Stephen, RM (2007a) Identification of Japanese foxtail (Alopecurus japonicus) resistant to haloxyfop using three different assay techniques. Weed Sci 5:537540 Google Scholar
Yang, CH, Dong, LY, Li, J, Yang, YQ (2007b) Study on resistance of Alopecurus japonicus Steud. populations to haloxyfop-R-methyl in oilseed rape fields. Sci Agric Sin 12:27592765. [In Chinese]Google Scholar
Yu, Q, Collavo, A, Zheng, MQ, Owen, M, Sattin, M, Powles, SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547558 Google Scholar
Zhang, XQ, Powles, SB (2006) The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass (Lolium rigidum). Planta 223:550557 Google Scholar