Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:34:32.430Z Has data issue: false hasContentIssue false

Control of Rigid Ryegrass in Australian Wheat Production with Pyroxasulfone

Published online by Cambridge University Press:  20 January 2017

Peter Boutsalis*
Affiliation:
School of Agriculture, Food, and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
Gurjeet S. Gill
Affiliation:
School of Agriculture, Food, and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
Christopher Preston
Affiliation:
School of Agriculture, Food, and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
*
Corresponding author's E-mail: peter.boutsalis@adelaide.edu.au.

Abstract

In Australia, most wheat is sown in a no-till system without prior cultivation where herbicides are applied prior to sowing and incorporated by the planter. Trifluralin has been the most widely used PRE herbicide to control rigid ryegrass. The objective of this research was to determine crop safety and efficacy of alternative mechanism of action PRE herbicides for rigid ryegrass control in no-till wheat production. Pyroxasulfone achieved 98% control with PRE applications. The alternative PRE herbicides tested alone and in mixtures occasionally resulted in a significant reduction in wheat emergence but not crop yield. Trifluralin treatments failed at sites having trifluralin-resistant rigid ryegrass. Pyroxasulfone and prosulfocarb plus S-metolachlor were effective for control of rigid ryegrass across all trials with control ranging from 64 to 94%. This research demonstrated that PRE applications of herbicides other than trifluralin such as pyroxasulfone and prosulfocarb plus S-metolachlor can be safely and effectively used to control rigid ryegrass in no-till wheat.

En Australia, la mayoría del trigo se siembra en un sistema de labranza cero sin cultivo previo donde los herbicidas son aplicados antes de la siembra e incorporados con la sembradora. Trifluralin ha sido el herbicida PRE más ampliamente usado para el control de Lolium rigidum. El objetivo de esta investigación fue determinar la seguridad para el cultivo y la eficacia de herbicidas PRE con mecanismos de acción alternativos para el control de L. rigidum en producción de trigo en labranza cero. Pyroxasulfone alcanzó 98% de control con aplicaciones PRE. Los herbicidas PRE alternativos evaluados solos y en mezclas ocasionalmente resultaron en una reducción significativa en la emergencia del trigo pero no del rendimiento del cultivo. Los tratamientos de trifluralin fallaron en sitios que tenían L. rigidum resistente a trifluralin. Pyroxasulfone y prosulfocarb más S-metolachlor fueron efectivos para controlar L. rigidum en todos los ensayos con un control que fluctuó entre 64 y 94%. Esta investigación demostró que aplicaciones PRE de herbicidas diferentes a trifluralin, tales como pyroxasulfone y prosulfocarb más S-metolachlor pueden ser usados en forma segura y efectiva para el control de L. rigidum en trigo en labranza cero.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abulnaja, KO, Harwood, JL (1991) Interaction of thiocarbamate herbicides with fatty acid synthesis in germinating peas and their microsomal fractions. Phytochem 30:28832887 CrossRefGoogle Scholar
Boutsalis, P, Gill, GS, Preston, C (2012) Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across south-eastern Australia. Weed Technol 26:391398 Google Scholar
Broster, JC, Koetz, EA, Wu, H (2011) Herbicide resistance levels in annual ryegrass (Lolium rigidum Gaud.) in southern New South Wales. Plant Prot Q 26:2228 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2006a) Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust J Exp Agric 46:15571570 CrossRefGoogle Scholar
Chauhan, BS, Gill, GS, Preston, C (2006b) Influence of tillage systems on vertical distrubution, seedling emergence and persistence of rigid ryegrass (Lolium rigidum) seedbank. Weed Sci 54:669676 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2006c) Tillage systems affect trifluralin bioavailability in soil. Weed Sci 54:941947 Google Scholar
Chauhan, BS, Gill, GS, Preston, C (2007) Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium rigidum) in wheat. Weed Technol 21:5358 CrossRefGoogle Scholar
D'Emden, FH, Llewellyn, RS, Burton, MP (2006) Adoption of conservation tillage in Australian cropping regions: an application of duration analysis. Technol Forecast Soc Change 73:630647 Google Scholar
D'Emden, FH, Llewellyn, RS, Burton, MP (2008) Factors influencing the adoption of conservation tillage in Australian cropping regions. Aust J Agric Res Econ 52:169182 Google Scholar
El-Deek, MH, Hess, DF (1986) Inhibited mitotic entry is the cause of growth inhibition of cinmethylin. Weed Sci 34:684688 Google Scholar
Heap, IM (2013) International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed May 24, 2013Google Scholar
Hulting, AG, Dauer, JT, Hinds-Cook, B, Curtis, D, Koepke-Hill, RM, Mallory-Smith, C (2012) Management of Italian ryegrass (Lolium perenne ssp. multiflorum) in western Oregon with preemergence applications of pyroxasulfone in winter wheat. Weed Technol 26:230235 CrossRefGoogle Scholar
Jacques, GL, Harvey, RG (1979) Dinitroaniline herbicide phytotoxicity as influenced by soil moisture and herbicide vaporization. Weed Sci 27:536539 Google Scholar
Kenaga, EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4:2638 Google Scholar
Ladlie, JS, Meggitt, WF, Penner, D (1976) Effects of pH on metribuzin activity in the soil. Weed Sci 24:505507 Google Scholar
Lo, C, Merkle, MG (1984) Factors affecting the phytotoxicity of norflurazon. Weed Sci 32:279283 CrossRefGoogle Scholar
McKenzie, N, Isbell, RF, Jacquier, D (2001) Major soils used for agriculture in Australia. Pages 7194 in Peverill, KI, Sparrow, LA, Reuter, DA, eds. Soil Analysis: An Interpretation Manual. Melbourne, Australia: CSIRO Publishing Google Scholar
Moomaw, RS, Martin, AR (1978) Interaction of metribuzin and trifluralin with soil type on soybean (Glycine max) growth. Weed Sci 26:327331 CrossRefGoogle Scholar
Mueller, TC, Steckel, LE (2011) Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a Tennessee field soil. Weed Sci 59:574579 CrossRefGoogle Scholar
Osborne, BT, Shaw, DR, Ratliff, RL (1995) Soybean (Glycine max) cultivar tolerance to SAN 582H and metolachlor as influenced by soil moisture. Weed Sci 43:288292 Google Scholar
Owen, MJ, Walsh, MJ, Llewellyn, RS, Powles, SB (2007) Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust J Agric Res 58:711718 CrossRefGoogle Scholar
Rainbow, R, Derpsch, R (2011) Advances in no-till farming technologies and soil compaction management in rainfed farming systems. Pages 9911014 in Tow, P, Cooper, I, Partridge, I, Birch, C, eds. Rainfed Farming Systems. New York: Springer Google Scholar
Salzman, FP, Renner, KA (1992) Response of soybean to combinations of clomazone, metribuzin, linuron, alachlor, and atrazine. Weed Technol 6:922929 Google Scholar
Schmalfuss, J, Matthes, H, Knuth, K, Böger, P (2000) Inhibition of acetyl-CoA elongation by chloroacetamide herbicides in microsomes from leek seedlings. Pestic Biochem Physiol 67:2535 CrossRefGoogle Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227 Google Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 Google Scholar
Walker, A (1971) Effects of soil moisture content on the availability of soil-applied herbicides to plants. Pestic Sci 5659 CrossRefGoogle Scholar
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037 Google Scholar
Westra, EP (2012) Adsorption, leaching, and dissipation of pyroxasulfone and two chloroacetamide herbicides. . Fort Collins, CO: Colorado State University. 69 pGoogle Scholar
Zadoks, JC, Chang, TT, Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415421 CrossRefGoogle Scholar