Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-11T07:41:20.080Z Has data issue: false hasContentIssue false

Common Sunflower (Helianthus annuus) Interference in Soybean (Glycine max)

Published online by Cambridge University Press:  12 June 2017

Patrick W. Geier
Affiliation:
Kansas State Univ. Agric. Res. Ctr.-Hays, 1232 240th Ave., Hays, KS 67601
Larry D. Maddux
Affiliation:
Dep. Agron., Kansas State Univ., Manhattan, KS 66502
Loren J. Moshier
Affiliation:
Dep. Agron., Kansas State Univ., Manhattan, KS 66502
Phillip W. Stahlman
Affiliation:
Kansas State Univ. Agric. Res. Ctr.-Hays, 1232 240th Ave., Hays, KS 67601

Abstract

An in-row competition study was conducted in 1991 and 1992 near Silver Lake, KS to determine the relationship of noncultivated common sunflower density to soybean yield, PAR at the soybean canopy, and common sunflower dry matter production. Because of environmental differences, year main effect interactions occurred, so results are presented by year. For example, 0.3 common sunflower plant/m2produced 4030 kg/ha of aboveground dry matter in 1991 and 1300 kg/ha in 1992. Soybean yield reduction ranged from 19 and 17% with 0.3 common sunflower plant/m2to 97 and 95% with 4.6 plant/m2, in 1991 and 1992, respectively. Assuming a treatment cost of $35/ha and a soybean market price of $0.21/kg, economic threshold levels were 0.1 common sunflower plant/m2in 1991, and 0.07 in 1992. Common sunflower at 0.3 plant/m2reduced PAR at the soybean canopy by 390 and 300 μE/m2/s, or 24 and 18% in 1991 and 1992, respectively. We conclude that the ability of common sunflower to intercept PAR above the soybean canopy is an important component in its interference with soybean.

Type
Research
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Akey, W. C., Jurik, T. W., and Dekker, J. 1990. Competition for light between velvetleaf (Abutilon theophrasti) and soybean (Glycine max). Weed Res. 30:403411.CrossRefGoogle Scholar
2. Aldrich, R. J., 1984. Nature of weed competition. p. 189213 in Bartlett, J. P., ed. Weed-Crop Ecology. Brenton Publishers, North Scituate, MA.Google Scholar
3. Auwarter, G. E., and Nalewaja, J. D. 1976. Volunteer sunflower competition in soybeans. Proc. North Cent. Weed Control Conf. 31:3435.Google Scholar
4. Barrentine, W. L., 1974. Common cocklebur competition in soybeans. Weed Sci. 22:600603.CrossRefGoogle Scholar
5. Baysinger, J. A., and Sims, B. D. 1991. Giant ragweed (Ambrosia trifida) interference in soybeans (Glycine max). Weed Sci. 39:358362.CrossRefGoogle Scholar
6. Bloomberg, J. R., Kirkpatrick, B. L., and Wax, L. M. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with soybean (Glycine max). Weed Sci. 30:507513.CrossRefGoogle Scholar
7. Chism, W. J., Birch, J. B., and Bingham, S. W. 1992. Nonlinear regression for analyzing growth stages and quinclorac interactions. Weed Technol. 6:898903.CrossRefGoogle Scholar
8. Dekker, J., and Meggitt, W. F. 1983. Interference between velvetleaf (Abutilon theophrasti Medic.) and soybean [Glycine max (L.) Merr.]. Weed Res. 23:91101.CrossRefGoogle Scholar
9. Gillespie, G. R., and Miller, S. D. 1984. Sunflower competition in wheat. Can. J. Plant Sci. 64:105111.CrossRefGoogle Scholar
10. Heiser, C. B., Smith, D. M., Clevenger, S. B., and Martin, W. C. 1969. The North American sunflowers. Mem. Torrey Bot. Club. 22:1218.Google Scholar
11. Irons, S. M., and Burnside, O. C. 1982. Competitive and allelopathic effects of sunflower (Helianthus annuus). Weed Sci. 30:372377.CrossRefGoogle Scholar
12. Kirkpatrick, B. L., Wax, L. M., and Stoller, E. W. 1983. Competition of jimsonweed with soybeans. Agron. J. 75:833836.CrossRefGoogle Scholar
13. Klingaman, T. E., and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.CrossRefGoogle Scholar
14. Regehr, D. L., Peterson, D. E., Ohlenbusch, P. D., Fick, W. H., Stahlman, P. W., and Kuhlman, D. K. 1995. Chemical weed control for field crops, pastures, rangeland, and noncropland, 1995. Kansas Agric. Exp. Stn. Rep. Prog. 718:152.Google Scholar
15. SAS Institute. 1992. SAS Users Guide: Statistics, Version 6.03. SAS Inst., Inc. Cary, NC. 1028 p.Google Scholar
16. Schweizer, E. E., and Bridge, L. D. 1982. Sunflower (Helianthus annuus) and velvetleaf (Abutilon theophrasti) interference in sugarbeets (Beta vulgaris). Weed Sci. 30:514519.CrossRefGoogle Scholar
17. Stoller, E. W., and Woolley, J. T. 1985. Competition for light by broadleaf weeds in soybeans (Glycine max). Weed Sci. 33:199202.CrossRefGoogle Scholar
18. Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.Google Scholar
19. Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference in soybean (Glycine max). Weed Technol. 8:559564.CrossRefGoogle Scholar