Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T10:30:24.020Z Has data issue: false hasContentIssue false

Common Ragweed (Ambrosia artemisiifolia) Growth as Affected by Plant Density and Clipping

Published online by Cambridge University Press:  20 January 2017

Cristina Patracchini*
Affiliation:
Department of Agronomy, Forest and Land Management, University of Turin, Via Leonardo Da Vinci 44, 10095, Grugliasco (TO), Italy
Francesco Vidotto
Affiliation:
Department of Agronomy, Forest and Land Management, University of Turin, Via Leonardo Da Vinci 44, 10095, Grugliasco (TO), Italy
Aldo Ferrero
Affiliation:
Department of Agronomy, Forest and Land Management, University of Turin, Via Leonardo Da Vinci 44, 10095, Grugliasco (TO), Italy
*
Corresponding author's E-mail: cristina.patracchini@unito.it.

Abstract

During the past century, common ragweed has spread from its native eastern North America to Europe, where it has become an increasing problem from both an agricultural and a human health perspective. Two field experiments were performed over a 2-yr period in a naturally infested fallow field in northern Italy to evaluate the effects of common ragweed plant density on its growth dynamics and to study its response to clipping. In the first experiment, three plant densities were tested (4, 12.5, and 25 plants m−2) and plant height, aboveground biomass, and leaf area were assessed. Intraspecific competition had a substantial negative effect on leaf area and aboveground biomass on a per plant basis in both years, but did not affect plant height. However, the high-density (25 plants m−2) treatment resulted in the highest total aboveground biomass (1,428 and 4,377 g m−2) and leaf area index (5.6 and 12.6 m2 m−2) in 2006 and 2007, respectively. In the second experiment, common ragweed plants were clipped at reaching 20 cm (four clippings during the season), 50 cm (three clippings), or 80 cm (two clippings) plant height. Number of surviving plants, flowering plants, and aboveground biomass were assessed before each clipping. Clipping resulted in a partial reduction in the surviving plants and did not prevent flowering. Under the most stressing condition (clipping at 20 cm height), more than 67% of plants survived to the last clipping and, among these, more than 97% flowered, whereas before the last clipping at reaching 80 cm height from 50 to 100% of plants survived and 100% of them flowered. These findings in northern Italy confirm that common ragweed is a fast-growing annual species, capable of producing considerable aboveground biomass at various pure stand densities and that plants can still flower from plants clipped at various frequencies.

Desde el siglo pasado, Ambrosia artemisiifolia se ha extendido de su origen nativo en el oriente de Norteamérica hasta Europa, donde se ha convertido en un creciente problema tanto desde el punto de vista agrícola como el de salud humana. Se efectuaron dos experimentos de campo a lo largo de un período de 2 años en el norte de Italia en un campo de barbecho infestado naturalmente, para evaluar los efectos de las densidades de A. artemisiifolia sobre sus dinámicas de crecimiento y para estudiar su respuesta al corte. En el primer experimento, se evaluaron 3 densidades de plantas (4, 12.5, y 25 plantas m−2), en las cuales se midió la altura, la biomasa aérea y el área foliar. La competencia intra-específica tuvo un efecto substancial negativo en el área foliar y biomasa aérea por planta en ambos años, pero no afectó la altura. Sin embargo, el tratamiento de alta densidad (25 plantas m−2) registró la mayor cantidad de biomasa (1428 y 4377 g m−2) y de índice de área foliar (5.6 y 12.6 m2 m−2) en 2006 y 2007, respectivamente. En el segundo experimento, las plantas de A. artemisiifolia se cortaron cuando alcanzaron una altura de 20 cm (cuatro cortes durante la estación), 50 cm (tres cortes), y 80 cm (dos cortes). El número de plantas sobrevivientes, de plantas en floración y de biomasa aérea, fueron evaluadas antes de cada corte. El corte provocó una reducción parcial en las plantas sobrevivientes y no impidió la floración. Bajo la condición más estresante (corte a los 20 cm de alto), más del 67% de las plantas sobrevivieron antes del último corte y de éstas, más del 97% florecieron, mientras que antes del último corte, al alcanzar los 80 cm de altura, sobrevivieron de 50 a 100% y de éstas el 100% florecieron. Estos resultados en el norte de Italia confirman que A. artemisiifolia es una especie anual de rápido crecimiento, capaz de producir considerable cantidad de biomasa aérea a diferentes densidades y que las plantas pueden aún florecer cuando se cortan a varias frecuencias.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abramoff, M., Magelhaes, P., and Ram, S. 2004. Image Processing with ImageJ. Biophotonics Int 11:3642.Google Scholar
Abul-Fatih, H. A. and Bazzaz, F. A. 1979. The biology of Ambrosia trifida L. III. Growth and biomass allocation. New Phytol 83:829838.Google Scholar
Armesto, J. J. and Pickett, S. T. A. 1985. Experiments on disturbance in old-field plant communities: impact on species richness and abundance. Ecology 66:230240.Google Scholar
Bassett, I. J. and Crompton, C. W. 1975. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci 55:463476.Google Scholar
Benoit, D. L. 2009. Morphological differences between carrot and weeds: its usefulness in selective mowing as a weed control technique. Pages. 30. in. Proceedings of the 8th EWRS Workshop on Physical and Cultural Weed Control. Zaragoza, Spain: European Weed Research Society.Google Scholar
Benzel, K. R., Mosley, T. K., and Mosley, J. C. 2009. Defoliation timing effects on spotted knapweed seed production and viability. Rangeland Ecol. Manag 62:550556.Google Scholar
Bohren, C. 2006. Ambrosia artemisiifolia L.—in Switzerland: concerted action to prevent further spreading. Nachrichtenbl. Deut. Pflanzenschutzd 58:304308.Google Scholar
Bohren, C., Mermillod, G., and Delabays, N. 2008. Ambrosia artemisiifolia L.—control measures and their effects on its capacity of reproduction. J. Plant Dis. Prot 21:307312.Google Scholar
Brandes, D. and Nitzsche, J. 2006. Biology, introduction, dispersal, and distribution of common ragweed (Ambrosia artemisiifolia L.) with special regard to Germany. Nachrichtenbl. Deut. Pflanzenschutzd 58:286291.Google Scholar
Buttenschøn, R. M., Waldispühl, S., and Bohren, C. 2009. Guidelines for management of common ragweed, Ambrosia artemisiifolia. http:/www.EUPHRESCO.org. Accessed: May 25, 2010.Google Scholar
Caño, L., Escarré, J., Fleck, I., Blanco-Moreno, J. M., and Sans, F. X. 2008. Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus . J. Ecol 96:468476.Google Scholar
Chauvel, B., Dessaint, F., Cardinal-Legrand, C., and Bretagnolle, F. 2006. The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. J. Biogeogr 33:665673.Google Scholar
Chauvel, B. and Fumanal, B. 2009. Seed Production of Ambrosia artemisiifolia under Stress Conditions. Alfortville, France: Association Française de Protection des Plantes. Pp. 465472.Google Scholar
Chauvel, B., Vieren, E., Fumanal, B., and Bretagnolle, F. 2004. Possibilité de dissemination d'Ambrosia artemisiifolia L. via les semences de tournesol. Pages. 445452. in Proceedings of the XIIème Colloque International sur la Biologie des Mauvaises Herbes. AFPP, Dijon, France.Google Scholar
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Steege, Ht, Morgan, H. D., v.d. Heijden, M. G. A., Pausas, J. G., and Poorter, H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot 51:335380.Google Scholar
Deen, W., Hunt, L. A., and Swanton, C. J. 1998a. Photothermal time describes common ragweed (Ambrosia artemisiifolia L.) phenological development and growth. Weed Sci 46:561568.Google Scholar
Deen, W., Hunt, T., and Swanton, C. J. 1998b. Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46:555560.Google Scholar
Delabays, N., Bohren, C., Mermillod, G., Baker, A., and Vertenten, J. 2008. Breaking the life cycle of common ragweed (Ambrosia artemisiifolia L.) to exhaust seed bank. I. Efficiency and optimisation of various mowing schemes. Revue Suisse d'Agriculture 40:143149.Google Scholar
DiTommaso, A. 2004. Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Sci 52:10021009.Google Scholar
Fumanal, B., Chauvel, B., and Bretagnolle, F. 2007. Estimation of pollen and seed production of common ragweed in France. Ann. Agric. Environ. Med 14:233236.Google Scholar
Fumanal, B., Gaudot, I., and Bretagnolle, F. 2008. Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L. Seed Sci. Res 18:101114.Google Scholar
Irwin, D. L. and Aarssen, L. W. 1996. Testing for cost of apical dominance in vegetation: a field study of three species. Ann. Bot. Fenn 33:123128.Google Scholar
Jurik, T. W. 1991. Population distributions of plant size and light environment of giant ragweed (Ambrosia trifida L.) at three densities. Oecologia 87:539550.Google Scholar
Kazinczi, G., Beres, I., Novak, R., Birò, K., and Pathy, Z. 2008. Common ragweed (Ambrosia artemisiifolia): a review with special regards to the results in Hungary. I. Taxonomy, origin and distribution, morphology, life cycle and reproduction strategy. Herbologia 9:5591.Google Scholar
Li, B., Shibuya, T., Yogo, Y., and Hara, T. 2004. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol. Res 19:603612.Google Scholar
MacDonald, A. A. M. and Kotanen, P. M. 2010a. The effects of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range. Oecologia 162:977986.Google Scholar
MacDonald, A. A. M. and Kotanen, P. M. 2010b. Leaf damage has weak effects on growth and fecundity of common ragweed (Ambrosia artemisiifolia). Botany 88:158164.Google Scholar
Milla, R., Reich, P. B., Niinemets, Ü, and Castro-Díez, P. 2008. Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Funct. Ecol 22:565576.Google Scholar
Mitich, L. W. 1996. Ragweeds (Ambrosia spp.)—the hay fever weeds. Weed Technol 10:236240.Google Scholar
Pyšek, P., Krinke, L., Jarošík, V., Perglová, I., Pergl, J., and Moravcová, L. 2007. Timing and extent of tissue removal affect reproduction characteristics of an invasive species Heracleum mantegazzianum . Biol. Invasions 9:335351.Google Scholar
Ramula, S. and Buckley, Y. M. 2009. Multiple life stages with multiple replicated density levels are required to estimate density dependence for plants. Oikos 118:11641173.Google Scholar
Rasband, W. S. 1997–2009. ImageJ. http://rsb.info.nih.gov/ij/. Accessed: May 15, 2006.Google Scholar
Rebek, K. A. and O'Neil, R. J. 2006. The effects of natural and manipulated density regimes on Alliaria petiolata survival, growth and reproduction. Weed Res 46:345352.Google Scholar
Rejmanek, M. and Richardson, D. M. 1996. What attributes make some plant species more invasive? Ecology 77:16551661.Google Scholar
Vile, D., Garnier, É, Shipley, B., et al. 2005. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot 96:11291136.Google Scholar
Vincent, G. and Ahmim, M. 1985. Note on the behaviour of Ambrosia artemisiifolia after cutting. Phytoprotection 66:165168.Google Scholar
Vogl, G., Smolik, M., Stadler, L. M., Leitner, M., Essl, F., Dullinger, S., Kleinbauer, I., and Peterseil, J. 2008. Modelling the spread of ragweed: effects of habitat, climate change and diffusion. Eur. Phys. J.–Spec. Top 161:167173.Google Scholar
Wilson, P. J., Thompson, K., and Hodgson, J. G. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155162.Google Scholar
Wright, I. J., Reich, P. B., and Westoby, M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol 15:423434.Google Scholar