Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-wr4x4 Total loading time: 0.28 Render date: 2023-02-01T19:34:14.120Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Strategies for Using Transgenes to Produce Allelopathic Crops

Published online by Cambridge University Press:  20 January 2017

Stephen O. Duke*
Affiliation:
USDA, Agricultural Research Service, P.O. Box 8048, University, MS 38677
Brian E. Scheffler
Affiliation:
USDA, Agricultural Research Service, P.O. Box 8048, University, MS 38677
Franck E. Dayan
Affiliation:
USDA, Agricultural Research Service, P.O. Box 8048, University, MS 38677
Leslie A. Weston
Affiliation:
Cornell University, Ithaca, NY 14853
Eiji Ota
Affiliation:
USDA, Agricultural Research Service, P.O. Box 8048, University, MS 38677
*
Corresponding author's E-mail: sduke@olemiss.edu.

Abstract

Crop allelopathy has seldom been used effectively by farmers in weed management. Traditional breeding methods have not been successful in producing highly allelopathic crops with good yields. Genetic engineering may have the potential for overcoming this impasse. Crops have been made resistant to insects, pathogens, and herbicides with transgenes, but biotechnology has not produced crops that control weeds with allelochemicals. The strategies for producing allelopathic crops by biotechnology are relatively complex, usually involving multiple genes. One can choose to enhance production of allelochemicals already present in a crop or to impart the production of new compounds. The first strategy involves identification of the allelochemical(s), determination of the enzymes and genes encoding them, and the use of genetic engineering to enhance their production. The latter strategy employs altering existing biochemical pathways by insertions of transgenes to produce new allelochemicals. With either strategy, there are potential problems with tissue-specific promoters, autotoxicity, metabolic imbalances, and proper movement of the allelopathic compound to the rhizosphere.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amagasa, T., Paul, R. N., Heitholt, J. J., and Duke, S. O. 1994. Physiological effects of cornexistin on Lemna pauscicostata . Pestic. Biochem. Physiol. 49: 3752.CrossRefGoogle Scholar
Anonymous. 1998. US ACPA members’ sales up 5.5% in 1997. Agrow World Crop Prot. News 304:16.Google Scholar
Bancroft, I., Bhatt, A. M., Sjodin, C., Scofield, S., Jones, J.D.G., and Dean, C. 1992. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana . Mol. Gen. Genet. 233: 449461.CrossRefGoogle ScholarPubMed
Beachy, R. N. and Bendahmane, M. 2000. Genetic engineering in IPM: a case history for virus disease resistance. In Kennedy, G. G. and Sutton, T. B., eds. Emerging Technologies for Integrated Pest Management: Concepts, Research and Implementation. St. Paul, MN: American Phytopathology Society Press. pp. 101107.Google Scholar
Bradley, J. M., Davies, K. M., Deroles, S. C., Bloor, S. J., and Lewis, D. H. 1998. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13: 381392.CrossRefGoogle Scholar
Callaway, R. M., and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521523.CrossRefGoogle ScholarPubMed
Canel, C. 1999. From genes to phytochemicals: the genomics approach to the characterization and utilization of plant secondary metabolism. Acta Hortic. 500: 5157.CrossRefGoogle Scholar
Canel, C., Lopes-Cardoso, M. I., Whitmer, S., van der Fits, L., Pasquali, G., van der Heijden, R., Hoge, J. H., and Verpoorte, R. 1998. Effects of overexpression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus . Planta 205: 414419.CrossRefGoogle Scholar
Chavez, R.S.C., Gealy, D. R., and Black, H. L. 1999. Reduced propanil rates and naturally suppressive cultivars for barnyardgrass control in drillseeded rice. In Norman, R. J. and Johnson, T. H., eds. B. R. Wells Rice Research Studies—1998, series 468. Fayetteville: Arkansas Agricultural Experiment Station. pp. 4350.Google Scholar
Duke, S. O., ed. 1996. Herbicide-Resistant Crops. Boca Raton: FL: CRC Press. 420 p.Google Scholar
Duke, S. O. 1998. Herbicide-resistant crops—their influence on weed science. J. Weed Sci. Technol. (Zasso-Kenkyu, Japan) 43: 94100.CrossRefGoogle Scholar
Duke, S. O., Canel, C., Rimando, A. M., Tellez, M. R., Duke, M. V., and Paul, R. N. 2000a. Current and potential exploitation of plant glandular trichome productivity. Adv. Bot. Res. 31: 121151.CrossRefGoogle Scholar
Duke, S. O., Dayan, F. E., Romagni, J. G., and Rimando, A. M. 2000b. Natural products as sources of herbicides: current status and future trends. Weed Res. 40: 99111.CrossRefGoogle Scholar
Duke, S. O., Rimando, A. M., Dayan, F. E., et al. 2000c. Strategies for the discovery of bioactive phytochemicals. In Bidlack, W. R., Omaye, S. T., Meskin, M. S., and Topham, D.K.W., eds. Phytochemicals as Bioactive Agents. Lancaster, PA: Technomic Publishing. pp. 120.Google Scholar
Dyer, W. E. 1994. Resistance to glyphosate. In Powles, S. B. and Holtum, A.J.M., eds. Herbicide Resistance in Plants. Boca Raton, FL: Lewis Publishers. pp. 229241.Google Scholar
Fate, G., Chang, M., and Lynn, D. G. 1990. Control of germination in Striga asiatica: chemistry of spatial definition. Plant Physiol. 93: 201207.CrossRefGoogle ScholarPubMed
Fitt, G. P. and Wilson, L. J. 2000. Genetic engineering in IPM: Bt cotton. In Kennedy, G. G. and Sutton, T. B., eds. Emerging Technologies for Integrated Pest Management: Concepts, Research and Implementation. St. Paul, MN: American Phytopathology Society Press. pp.108-125.Google Scholar
Forney, D. R. and Foy, C. L. 1985. Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (S. bicolor × S. sudanese). Weed Sci. 33: 597604.Google Scholar
Frey, M., Kliem, R., Saedler, H., and Gierl, A. 1995. Expression of a cytochrome P450 gene family in maize. Mol. Gen. Genet. 246: 100109.CrossRefGoogle ScholarPubMed
Frey, M., Chomet, P., Glawischnig, E., et al. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277: 696699.CrossRefGoogle ScholarPubMed
Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20: 12811328.CrossRefGoogle ScholarPubMed
Gonzalez, V., Nimbal, C. I., Weston, L. A., and Cheniae, G. M. 1997. Inhibition of a photosystem II electron transfer reaction by sorgoleone, a natural product. J. Agric. Food Chem. 45: 14151421.CrossRefGoogle Scholar
Hancock, J. F., Grumet, R., and Hokanson, S. C. 1996. The opportunity for escape of engineered genes from transgenic crops. HortScience 31: 10801085.Google Scholar
Hess, F. D. and Duke, S. O. 2000. Genetic engineering in IPM: a case study: herbicide tolerance. In Kennedy, G. G. and Sutton, T. B., eds. Emerging Technologies for Integrated Pest Management: Concepts, Research and Implementation. St. Paul, MN: American Phytopathology Society Press. pp. 126140.Google Scholar
Izawa, T., Ohnishik, T., Nakano, T., et al. 1997. Transposon tagging in rice. Plant Mol. Biol. 35: 219229.CrossRefGoogle Scholar
Jorgensen, R. A., Cluster, P. D., English, J., Que, Q., and Napoli, C. A. 1996. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex TDNA sequences. Plant Mol. Biol. 31: 957973.Google ScholarPubMed
Kutchan, T. M. 1989. Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentia in Escherichia coli . FEBS Lett. 257: 127130.CrossRefGoogle Scholar
Lovett, J. V. and Hoult, A.H.C. 1995. Allelopathy and self-defense in barley. Am. Chem. Soc. Symp. Ser. 582: 170183.Google Scholar
Luckner, M. 1984. Secondary Metabolism in Microorganisms, Plants and Animals. Berlin: Springer-Verlag. 576 p.CrossRefGoogle Scholar
Lydon, J. 1996. The molecular genetics of bacterial phytotoxins. Plant Growth Regul. Soc. Am. Q. 24: 111139.Google Scholar
Lydon, J. and Duke, S. O. 1999. Inhibitors of glutamine biosynthesis. In Singh, B. K., ed. Plant Amino Acids, Biochemistry and Biotechnology. New York: Marcel Dekker. pp. 445464.Google Scholar
Netzley, D. H., Reopel, J. L., Ejeta, G., and Butler, L. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of Sorghum (Sorghum bicolor). Weed Sci. 36: 441446.Google Scholar
Niemeyer, H. M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemistry 27: 33493358.CrossRefGoogle Scholar
Nimbal, C. I., Pederson, J. F., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996a. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44: 13431347.CrossRefGoogle Scholar
Nimbal, C. I., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996b. Herbicidal activity and site of action of the natural product sorgoleone. Pestic. Biochem. Physiol. 54: 7383.CrossRefGoogle Scholar
Olofsdotter, M., Wang, D., and Navarez, D. 1999. Allelopathic rice for weed control In Macias, F. A., Galindo, J.C.G., Molinillo, J.M.G., and Cutler, H. G., eds. Recent Advances in Allelopathy. Volume 1. A Science for the Future. Cadiz, Spain: University of Cadiz Press. pp. 383390.Google Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, F. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup™ gene. In: Duke, S. O., ed., Herbicide-Resistant Crops. Boca Raton: FL: CRC Press. pp. 5384.Google Scholar
Putnam, A. R. and Duke, W. B. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science 185: 370372.CrossRefGoogle ScholarPubMed
Que, Q., Wang, H. Y., English, J. J., and Jorgensen, R. A. 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 13571368.CrossRefGoogle ScholarPubMed
Rasmussen, J. A., Hejl, A. M., Einhellig, F. A., and Thomas, J. A. 1992. Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol. 18: 197207.CrossRefGoogle ScholarPubMed
Rimando, A. M., Dayan, F. E., Czarnota, M. A., Weston, L. A., and Duke, S. O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor . J. Nat. Products 61: 927930.CrossRefGoogle ScholarPubMed
Rimando, A. M., Olofsdotter, M., Dayan, F. E., and Duke, S. O. 2001. Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron. J. 93: 1620.CrossRefGoogle Scholar
Saari, L. L. and Maxwell, C. A. 1997. Target-site resistance for acetolactate synthase inhibitor herbicides. In DePrado, R., Jorrín, J., and García-Torres, L., eds. Weed and Crop Resistance to Herbicides. Amsterdam: Kluwer. pp. 8188.CrossRefGoogle Scholar
Scheffler, B., Franken, P., Schutt, E., Schrell, A., Saedler, H., and Wienand, U. 1994. Molecular analysis of C1 alleles in Zea mays defines regions involved in the expression of this regulatory gene. Mol. Gen. Genet. 242: 4048.Google ScholarPubMed
Shimamoto, K., Miyazaki, C., Hashimoto, H., Izawa, T., Itoh, K., Terada, R., Inagaki, Y., and Iida, S. 1993. Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol. Gen. Genet. 239: 354360.CrossRefGoogle Scholar
Siehl, D. L., Subramanian, M. V., Walters, E. W., Lee, S.-F., Anderson, R. J., and Toshi, A. G. 1996. Adenylosuccinate synthetase: site of action of hydantocidin, a microbial phytotoxin. Plant Physiol. 110: 753758.CrossRefGoogle ScholarPubMed
Weston, L. A. 1996. Utilization of allelopathy for weed management. Agron. J. 88: 860866.CrossRefGoogle Scholar
Wieland, I., Friebe, A., Kluge, M., Sicker, D., and Schultz, M. 1999. Detoxification of benzoxazolin-2(3H)-one in higher plants. In Macias, F. A., Galindo, J.C.G., Molinillo, J.M.G., and Cutler, H. G., eds. Recent Advances in Allelopathy. Volume 1. A Science for the Future. Cadiz, Spain: University of Cadiz Press. pp. 4756.Google Scholar
Wu, H., Pratley, H., Lemerle, D., and Haig, T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39: 171180.CrossRefGoogle Scholar
Yang, X., Scheffer, B. E., and Weston, L. A. 2001. Analysis of gene expression related to sorgoleone production using mRNA differential display. Weed Sci. Soc. Am. Abstr. 41:37.Google Scholar
Yao, K., De Luca, V., and Brisson, N. 1995. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytopthora infestans . Plant Cell 7: 17871799.CrossRefGoogle Scholar
41
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strategies for Using Transgenes to Produce Allelopathic Crops
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Strategies for Using Transgenes to Produce Allelopathic Crops
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Strategies for Using Transgenes to Produce Allelopathic Crops
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *