Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T06:10:34.888Z Has data issue: false hasContentIssue false

A Rapid Method to Determine Cereal Plant Response to Glyphosate

Published online by Cambridge University Press:  20 January 2017

M. C. Escorial
Affiliation:
Departamento Proteccion Vegetal, INIA, Carretera La Coruña Km 7, Madrid 28040, Spain
H. Sixto
Affiliation:
Departamento Proteccion Vegetal, INIA, Carretera La Coruña Km 7, Madrid 28040, Spain
J. M. García-Baudín
Affiliation:
Departamento Proteccion Vegetal, INIA, Carretera La Coruña Km 7, Madrid 28040, Spain
M. C. Chueca*
Affiliation:
Departamento Proteccion Vegetal, INIA, Carretera La Coruña Km 7, Madrid 28040, Spain
*
Corresponding author's E-mail: chueca@inia.es.

Abstract

A rapid method for determining the response of cereals to glyphosate is described. This method detects the differential responses of plants in 4 d, allowing for the rapid selection of glyphosate-tolerance response. Two types of tests determined the efficacy of this rapid method: differential response to different dosages of herbicide in a coleoptile growth test and in sprayed plants. In seedling assay, barley cultivars showed a higher level of tolerance to glyphosate (the dose that causes 50% of the total effect [I50] = 0.066 and I50 = 0.060 mM) than wheat cultivars (I50 = 0.018 and I50 = 0.014 mM). The response in seedling assay is well correlated (r2 = 0.95 and r2 = 0.98) with the response in plant-sprayed assays. The method was employed to verify the tolerance level of a sensitive barley cultivar and the four tolerant and sensitive mutant lines derived from it.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address of second author: Departamento Silvopascicultura, INIA, Carretera La Coruña Km 7, Madrid 28040, Spain

References

Literature Cited

Duke, S. O. 1988. Glyphosate. In Kearney, P. C. and Kaufman, D. D., eds. Herbicides. Chemistry, Degradation, and Mode of Action. Volume 3. Marcel Dekker: New York. pp. 170.Google Scholar
Duke, S. O. and Hoagland, R. E. 1978. Effects of glyphosate on metabolism of phenolic compounds. I. Induction of phenylalanine ammonia-lyase activity in dark-grown maize roots. Plant Sci. Lett. 11: 185190.Google Scholar
Escorial, M. C., Sixto, H., Garcia-Baudin, J. M., and Chueca, M. C. 1995. Induced mutation for glyphosate herbicide resistance in barley. XIV EUCARPIA Congress. Adaptation in Plant Breeding. Jyväskyla, Finlandia: Jyäaskyla University Printing House and Sisäsuomi Oy. pp. 8687.Google Scholar
Goggi, A. S. and Stahr, M. G. 1997. ROUNDUP™. Pre-emergence treatment to determine the presence of the Roundup Ready™ gene in soybean seed: a laboratory test. Seed Technol. 19: 99102.Google Scholar
Harring, T., Streibig, J. C., and Husted, S. 1998. Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J. Agric. Food Chem. 46: 4,4064,412.CrossRefGoogle Scholar
Hensley, D. L., Beuerman, D.S.N., and Carpenter, P. L. 1978. The inactivation of glyphosate by various soils and metal salts. Weed Res. 18: 287291.CrossRefGoogle Scholar
Hoagland, R. E., Duke, S. O., and Elmore, C. D. 1979. Effects of glyphosate on metabolism of phenolic compounds. III. Phenylalanine ammonia-lyase activity, free amino acids, soluble protein and hydroxyphenolic compounds in axes of dark-grown soybeans. Physiol. Plant. 46: 357366.Google Scholar
Hull, H. M., Morton, H. L., and Whanie, J. R. 1975. Environmental influences on cuticle development and resultant foliar penetration. Bot. Rev. 41: 421452.CrossRefGoogle Scholar
Madsen, K. H., Heithol, J. J., Duke, S. O., Smeda, R. J., and Streibig, J. C. 1995. Photosynthetic parameters in glyphosate-treated sugarbeet (Beta vulgaris L.). Weed Res. 35: 8188.CrossRefGoogle Scholar
Racchi, M. L., Rebecchi, M., Todesco, G., Nielsen, E., and Forlani, G. 1995. Glyphosate tolerance in maize (Zea mays L.) 2. Selection and characterization of a tolerant somaclone. Euphytica 82: 165173.Google Scholar
Salto, T., Costa, J., and Garcia-Baudin, J. M. 1989. Eficacia a corto plazo de una nueva formulación de glifosato. Proc. 4th Eur. Weed Res. Soc. 1989. 174178.Google Scholar
Statistical Analysis Systems. 1989. SAS User's Guide: Basics. Version 6.06 ed. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9: 218227.CrossRefGoogle Scholar
Sprankle, P., Meggitt, W. F., and Penner, D. 1975. Rapid inactivation of glyphosate in the soil. Weed Sci. 23: 224228.CrossRefGoogle Scholar
van Toor, R. F., Hayes, A. L., Cooke, B. K., and Holloway, P. J. 1994. Relationships between the herbicidal activity and foliar uptake of surfactant-containing solutions of glyphosate applied to foliage of oats and field beans. Crop Prot. 13: 260270.CrossRefGoogle Scholar
Yenne, S. P., Thill, D. C., Letourneau, D. J., Auld, D. L., and Haderlie, L. C. 1988. Techniques for selection of glyphosate-tolerant field pea (Pisum sativum) cultivars. Weed Technol. 2: 286290.CrossRefGoogle Scholar