Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T07:34:03.079Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Rigid Ryegrass (Lolium rigidum) Populations in the Western Australian Grain Belt

Published online by Cambridge University Press:  20 January 2017

Mechelle J. Owen*
Affiliation:
Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Stephen B. Powles
Affiliation:
Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*
Corresponding author's E-mail: mowen@cyllene.uwa.edu.au.

Abstract

Glyphosate-resistance evolution in weeds is evident globally, especially in areas where transgenic glyphosate-resistant crops dominate. Resistance to glyphosate is currently known in 16 weed species, including rigid ryegrass in Australia. Following the first report of glyphosate resistance in 1998, there are now 78 documented glyphosate-resistant populations of rigid ryegrass in grain-growing regions of southern Australia. In some regions where glyphosate-resistance evolution has already occurred in rigid ryegrass, transgenic glyphosate-resistant canola was introduced in 2008, further highlighting the need to monitor glyphosate-resistance evolution in weeds. A rigid ryegrass population (WALR70) was collected in 2005 from a crop field in Esperance, Western Australia, after it had survived applications of glyphosate. Dose–response experiments confirmed resistance in the population, with the glyphosate rate resulting in 50% mortality (LD50) for WALR70 being 11 times greater than that for a susceptible biotype. The WALR70 population also had low levels of resistance to some acetyl coenzyme A carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides (diclofop, fluazifop, clodinafop, tralkoxydim, chlorsulfuron, and imazethapyr), but was susceptible to other herbicide modes of action, such as atrazine, trifluralin, and paraquat. Two other rigid ryegrass populations assessed in this study were also confirmed to be resistant to glyphosate. The increasing number of glyphosate-resistant rigid ryegrass populations in Australia is of concern to growers because of the importance of glyphosate in intensive cropping systems and the introduction of glyphosate-resistant canola to this region.

En la maleza, la evolución de la resistencia al glifosato es evidente mundialmente; en especial, en áreas donde dominan los cultivos transgénicos con resistencia al mismo. En Australia, la resistencia al glifosato es actualmente conocida en dieciséis especies de maleza, incluyendo Lolium (rigid ryegrass). A partir del primer reporte de resistencia en 1998, en el sureste de Australia existen hasta ahora 78 poblaciones documentadas de Lolium resistente. En algunas regiones en donde la evolución de la resistencia al glifosato ha ocurrido en Lolium rigidum, en 2008 fue introducida la canola transgénica resistente al glifosato, lo que resalta la necesidad de monitorear en el futuro la evolución de resistencia a esta sustancia en la maleza. Una población de Lolium rigidum (WALR70) que sobrevivió aplicaciones de glifosato fue recolectada en 2005 de un campo de cultivo en Esperance, al sureste de Australia. Experimentos de dosis-respuesta confirmaron la resistencia en la muestra, con la dosis de glifosato resultando en un 50% de mortalidad (LD50) para WALR70, lo cual es una tasa 11 veces mayor que lo normal para un biotipo susceptible. La población WALR70 también registró bajos niveles de resistencia a algunos ACCase y herbicidas inhibidores de ALS (diclofop, fluazifop, clodinafop, tralkoxydim, clorsulfuron e imazethapyr) pero fue susceptible a otros herbicidas de diferente acción como atrazina, trifluralin y paraquat. Otras dos poblaciones de Lolium rigidum evaluadas en este estudio también confirmaron ser resistentes al glifosato. El creciente número de poblaciones resistentes al glifosato en Australia constituye una gran preocupación para los agricultores, debido a su importancia en la aplicación de sistemas de cultivo intensivos y a la introducción de canola resistente, en mencionada región.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Broster, J. C. and Pratley, J. E. 2006. A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust. J. Exp. Agric 46:11511160.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci 64:319325.Google Scholar
Hashem, A. and Borger, C. 2009. More glyphosate-resistant annual ryegrass populations within Western Australia. Pages 276277. in. Proceedings of Agribusiness Crop Updates 2009. Perth, Western Australia: Department of Agriculture and Food.Google Scholar
Heap, J. and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci 48:156157.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848.Google Scholar
Llewellyn, R. S. and Powles, S. B. 2001. High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of Western Australia. Weed Technol 15:242248.Google Scholar
Michitte, P., De Prado, R., Espinoza, N., Ruiz-Santaella, J. P., and Gauvrit, C. 2007. Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci 55:435440.Google Scholar
Neve, P. B., Sadler, J., and Powles, S. B. 2004. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population. Weed Sci 52:920928.Google Scholar
Owen, M. J., Walsh, M. J., Llewellyn, R. S., and Powles, S. B. 2007. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res 58:711718.Google Scholar
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta 226:395404.Google Scholar
Powles, S. B. 2008. Review. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci 64:360365.Google Scholar
Powles, S. B., Lorraine-Colwill, D., Dellow, J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46:604607.Google Scholar
Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): a driving force for the adoption of integrated weed management strategies. Pages 7587. In Denholm, I., Devonshire, A., and Hollomon, D. Resistance 91: Achievements and Developments in Combating Pesticide Resistance. London: Elsevier.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved resistance in plants: biochemical and genetic basis of resistance. Weed Technol 20:282289.Google Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum . I. Bioevaluation. Weed Sci 47:405411.Google Scholar
Preston, C. 2008. Australian Glyphosate Resistance Register. National: Glyphosate Sustainability Working Group. http://www.weedscrc.org.au/glyphosate/glyphosate_resistance_register_summary.html. Accessed: April 21, 2009.Google Scholar
R Development Core Team 2007. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org. Accessed: December 12, 2008.Google Scholar
Steadman, K. J., Bignell, G. P., and Ellery, A. J. 2003. Field assessment of thermal after-ripening time for dormancy release prediction in Lolium rigidum seeds. Weed Res 43:458465.Google Scholar
Wakelin, A. and Preston, C. 2006. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432440.Google Scholar
Yu, Q., Abdallah, I., Han, H., Owen, M. J., and Powles, S. 2009. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide resistant Lolium rigidum . Planta 230:713723.Google Scholar
Yu, Q., Cairns, A., and Powles, S. 2007a. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225:499513.Google Scholar
Yu, Q., Collavo, A., Zheng, M. Q., Owen, M. J., Sattin, M., and Powles, S. B. 2007b. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium rigidum populations: evaluation using clethodim. Plant Physiol 145:547558.Google Scholar
Yu, Q., Han, H., and Powles, S. B. 2008. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag. Sci 64:12291236.Google Scholar