Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-cxxrm Total loading time: 0.249 Render date: 2021-12-04T23:53:49.577Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Dalmatian Toadflax (Linaria dalmatica): New Host for Cucumber Mosaic Virus

Published online by Cambridge University Press:  20 January 2017

Courtney L. Pariera Dinkins*
Affiliation:
Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717
Sue K. Brumfield
Affiliation:
Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
Robert K. D. Peterson
Affiliation:
Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717
William E. Grey
Affiliation:
Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717
Sharlene E. Sing
Affiliation:
Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717
*
Corresponding author's E-mail: mortney17@hotmail.com

Abstract

To date, there have been no reports of Dalmatian toadflax serving as a host for cucumber mosaic virus (CMV). Infestations of Dalmatian toadflax may serve as a reservoir of CMV, thereby facilitating aphid transmission of CMV to both agricultural crops and native plants. The goal of this study was to determine whether Dalmatian toadflax is a host for CMV. Dalmatian toadflax seedlings were randomly assigned to two treatments (18 replicates/treatment): no inoculation (control) and inoculation with CMV (Fast New York strain). The Dalmatian toadflax seedlings were inoculated by standard mechanical methods and tested for the presence of CMV using enzyme-linked immunosorbent assay (ELISA). Ten of the 18 CMV-inoculated toadflax plants tested positive for the virus; 6 of the 18 displayed systemic mosaic chlorosis and leaf curling. All control plants tested negative. Transmission electron microscopy obtained from CMV-positive plants confirmed the presence of CMV based on physical properties. To verify CMV infestation, tobacco plants were assigned to the following treatments (six replicates/treatment): no inoculation (control), CMV-negative (control) inoculation, and a CMV-positive inoculation. Plants were inoculated by standard methods. Five of the 6 tobacco plants treated with the CMV-positive inoculum tested positive for CMV using ELISA. All control plants tested negative for the virus.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Francki, R. I. B., Mossop, D. W., and Hatta, T. 1979. Cucumber mosaic virus. CMI/AAB Descriptions of Plant Viruses, No.213. Kew, Surrey, UK Commonwealth Mycological Institute and Association of Applied Biologists.Google Scholar
[NRC] National Research Council 1983. Risk Assessment in the Federal Government: Managing the Process. Washington, DC National Academy Press.Google ScholarPubMed
Rist, D. L. and Lorbeer, J. W. 1989. Occurrence and overwintering of cucumber mosaic virus and broad bean wilt virus in weeds growing near commercial lettuce fields in New York. Phytopathology 79:6569.CrossRefGoogle Scholar
University of Montana 2001. INVADERS Online Database System. Division of Biological Sciences. http://invader.dbs.umt.edu. Accessed: March 22, 2006.Google Scholar
[USOSTP] U.S. Office of Science Technology and Policy 1999. Ecological Risk Assessment in the Federal Government. Washington, DC Committee on Environment and Natural Resources of the National Science and Technology Council CENR/5-99/001. 219.Google Scholar
Vujnovic, K. and Wein, R. W. 1997. The biology of Canadian weeds. 106. Linaria dalmatica (L.) Mill. Can. J. Plant. Sci. 77:483491.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dalmatian Toadflax (Linaria dalmatica): New Host for Cucumber Mosaic Virus
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dalmatian Toadflax (Linaria dalmatica): New Host for Cucumber Mosaic Virus
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dalmatian Toadflax (Linaria dalmatica): New Host for Cucumber Mosaic Virus
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *