Skip to main content Accessibility help
Hostname: page-component-568f69f84b-lkk24 Total loading time: 0.195 Render date: 2021-09-17T05:20:14.268Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Assessment of Weed Management Practices and Problem Weeds in the Midsouth United States—Soybean: A Consultant's Perspective

Published online by Cambridge University Press:  20 January 2017

Dilpreet S. Riar*
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Department of Crop, Soil, and Environmental Sciences, 1366 West Altheimer Drive, Fayetteville, AR 72704
Lawrence E. Steckel
Department of Plant Sciences, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301
Daniel O. Stephenson IV
Dean Lee Research Station, Louisiana State University AgCenter, 8105 Tom Bowman Drive, Alexandria, LA 71302
Thomas W. Eubank
Delta Research and Extension Center, 82 Stoneville Road, Stoneville, MS 38776
Robert C. Scott
Department of Crop, Soil, and Environmental Sciences, Box 357, Lonoke, AR 72086
Corresponding author's E-mail:


Soybean consultants from Arkansas, Louisiana, Mississippi, and Tennessee were surveyed by direct mail and by on-farm visits in fall 2011 to assess weed management practices and the prevalence of weed species in midsouth U.S. soybean. These consultants represented 15, 21, 5, and 10% of total soybean planted in Arkansas, Louisiana, Mississippi, and Tennessee, respectively, in 2011. Collectively, 93% of the total scouted area in these four states was planted with glyphosate-resistant (RR) soybean. The adoption of glufosinate-resistant (LL) soybean was greatest in Arkansas (12%), followed by Tennessee (4%), Mississippi (2%), and Louisiana (< 1%). Only 17% of the RR soybean was treated solely with glyphosate, compared with 35% of LL soybean treated solely with glufosinate. Across four states, average cost of herbicides in RR and LL soybean systems was US$78 and US$91 ha−1, respectively. Collectively across states, total scouted area under conventional tillage was 42%, stale seedbed was 37%, and no-tillage was 21%. Palmer amaranth and morningglories were the most problematic weeds in all four states. Additionally, barnyardgrass and horseweed were the third most problematic weeds of Arkansas and Tennessee, respectively, and Italian ryegrass was the third most problematic weed in Louisiana and Mississippi. Glyphosate-resistant Palmer amaranth infested fewer fields in Louisiana (16% of fields) than it did in the remaining three states (54% collectively). Average Palmer amaranth hand-weeding costs in the midsouth was US$59 ha−1. Three-fourths of the midsouth consultants stipulated the need for continued research and education focused on management of glyphosate-resistant and glyphosate-tolerant weed species.

Asesores en soya de Arkansas, Louisiana, Mississippi, y Tennessee fueron encuestados vía correo y visitas en finca en el otoño de 2011 para evaluar las prácticas de manejo de malezas y la prevalencia de especies de malezas en la producción de soya en el Sur medio de los Estados Unidos. Estos asesores representaron 15, 21, 5 y 10% del total de soya plantada en Arkansas, Louisiana, Mississippi, y Tennessee, respectivamente en 2011. Colectivamente, 93% del total del área evaluada en estos cuatro estados fue sembrada con soya resistente a glyphsoate (RR). La adopción de soya resistente a glufosinate (LL) fue mayor en Arkansas (12%), seguida por Tennessee (4%), Mississippi (2%) y Louisiana (<1%). Solamente 17% de la soya RR fue tratada únicamente con glyphosate, al compararse con 35% de soya LL que fue tratada solamente con glufosinate. En los cuatro estados, el costo promedio de herbicidas en sistemas de soya RR y LL fue US$78 y US$91 ha−1, respectivamente. Colectivamente en los estados, el total del área evaluada que estuvo bajo labranza convencional fue 42%, siembra retrasada 37%, y cero labranza 21%. Amaranthus palmeri e Ipomoea spp. fueron las malezas más problemáticas en todos los cuatro estados. Adicionalmente, Echinochloa crus-galli y Conyza canadensis fueron las terceras malezas más problemáticas en Arkansas y Tennessee, respectivamente, y Lolium perenne fue la tercera maleza más problemática en Louisiana y Mississippi. A. palmeri resistente a glyphosate infestó menos campos en Louisiana (16% de los campos) que en el resto de los tres estados (54% colectivamente). El promedio del costo de deshierba manual de A. palmeri en el Sur medio fue de US$59 ha−1. Tres cuartos de los asesores del Sur medio estipularon la necesidad de investigación y educación continuas enfocadas en el manejo de malezas resistentes y tolerantes a glyphosate

Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bagavathiannan, M. V., Norsworthy, J. K., Smith, K. L., and Burgos, N. 2011. Seedbank size and emergence pattern of barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci. 59:359365.CrossRefGoogle Scholar
Ball, D. A. 1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 40:654659.CrossRefGoogle Scholar
Baltazar, A. M. and Smith, R. J. Jr. 1994. Propanil-resistant barnyardgrass (Echinochloa crus-galli) control in rice (Oryza sativa). Weed Sci. 8:576581.Google Scholar
Benbrook, C. 2009. Impacts of Genetically Engineered Crops on Pesticide Use in the United States: The First Thirteen Years. Accessed: October 2, 2012.Google Scholar
Bonny, S. 2011. Herbicide-tolerant transgenic soybean over 15 years of cultivation: pesticide use, weed resistance, and some economic issues: the case of the USA. Sustainability. 3:13021322.CrossRefGoogle Scholar
Bradley, J. F. 2000. Economic comparison of weed control systems in conservation tillage systems. Pages 14741476 in Dugger, C. P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conference, January 4–8, 2000, San Antonio, TX. Memphis, TN National Cotton Council of America.Google Scholar
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 50:448460.CrossRefGoogle Scholar
Cerdeira, A. L. and Duke, S. O. 2006. The current status and environmental impacts of glyphosate-resistant crops: a review. J. Environ. Qual. 35:16331658.Google ScholarPubMed
Coetzer, E., Al-Khatib, K., and Loughin, T. M. 2001. Glufosinate efficacy, absorption, and translocation in amaranth as affected by relative humidity and temperature. Weed Sci. 49:813.CrossRefGoogle Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.CrossRefGoogle Scholar
DeVore, J. D., Norsworthy, J. K., and Brye, K. 2013. Influence of deep tillage, a rye cover crop, and various soybean production systems on Palmer amaranth emergence in soybean. Weed Technol. DOI:.CrossRefGoogle Scholar
Fernandez-Cornejo, J. and Caswell, M. 2006. The first decade of genetically engineered crops in the United States. Washington, DC U.S. Department of Agriculture, Economic Research Service, Economic Information Bulletin No. 11.Google Scholar
Green, J. M. and Owen, M. D. K. 2011. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 59:58195829.CrossRefGoogle ScholarPubMed
Griffin, J. W. and Webster, E. P. 2012. Fighting Weeds in Louisiana Agriculture for 125 years. Accessed: October 18, 2012.Google Scholar
Hammond, E. 2010. Genetically Engineered Backslide: The Impact of Glyphosate-Resistant Palmer Pigweed on Agriculture in the United States. Penang, Malaysia Third World Network, TWN Biotechnology and BioSafety Series 12. Pp. 122 Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. Accessed: September 1, 2012.Google Scholar
Horowitz, J., Ebel, R., and Ueda, K. 2010. “No-Till” Farming is a Growing Practice. Washington, DC United States Department of Agriculture, Economic Research Service, Economic Information Bulletin 70.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.Google Scholar
Hurley, T. M., Mitchell, P. D., and Frisvold, G. B. 2009. Weed management costs, weed best management practices, and the Roundup Ready® weed management program. Agbioforum. 12:281290.Google Scholar
Jha, P. and Norsworthy, J. K. 2009. Soybean canopy and tillage effects on emergence of Palmer amaranth (Amaranthus palmeri) from a natural seed bank. Weed Sci. 57:644651.CrossRefGoogle Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant (Conyza canadensis) horseweed in Mississippi. Weed Technol. 18:820825.CrossRefGoogle Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M. D. K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.CrossRefGoogle Scholar
Lovelace, M. L. 2003. Implications of Quinclorac Use in Arkansas: Impacts of Quinclorac Drift on Tomato Physiology and Development of Quinclorac Resistance in Barnyardgrass. Ph.D Dissertation. Fayetteville, AR University of Arkansas. Pp. 7071.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol. 19:924933.CrossRefGoogle Scholar
Nandula, V. K., Reddy, K. N., Koger, C. H., Poston, D. H., Rimando, A. M., Duke, S. O., Bond, J. A., and Ribeiro, D. N. 2012. Multiple resistance to glyphosate and pyrithiobac in Palmer amaranth (Amaranthus palmeri) from Mississippi and response to flumiclorac. Weed Sci. 60:179188.CrossRefGoogle Scholar
Neve, P., Diggle, A. J., Smith, F. P., and Powles, S. B. 2003. Simulating evolution of glyphosate resistance in Lolium rigidum I: population biology of a rare resistance trait. Weed Res. 43:404417.Google Scholar
Neve, P., Norsworthy, J. K., Smith, K. L., and Zelaya, I. A. 2011. Modelling evolution and management of glyphosate resistance in Amaranthus palmeri . Weed Res. 51:99112.CrossRefGoogle Scholar
Nichols, R. L., Bond, J., and Culpepper, A. S., et al. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resist. Pest Manag. Newsl. 18:810.Google Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17:195201.CrossRefGoogle Scholar
Norsworthy, J. K. 2008. Effect of tillage intensity and herbicide programs on changes in weed species density and composition in the southeastern coastal plains of the United States. Crop Prot. 27:151160.CrossRefGoogle Scholar
Norsworthy, J. K. and Oliver, L. R. 2002. Effect of irrigation, soybean density, and glyphosate on hemp sesbania (Sesbania exaltata) and pitted morningglory (Ipomoea lacunosa) interference in soybean. Weed Technol. 16:717.CrossRefGoogle Scholar
Norsworthy, J. K., Bagavathiannan, M. V., Neve, P., Smith, K., and Zelaya, I. 2011. Integrating nonchemical practices into simulation modeling for herbicide resistance: a proactive strategy. Abstract 226 in Proceedings of the Annual Meeting of the Weed Science Society of America, February 7–11, 2011, Portland, OR. Champaign, IL WSSA.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Norsworthy, J. K., Scott, R., Smith, K., Still, J., Estorninos, L. E. Jr., and Bangarwa, S. 2009. Confirmation and management of clomazone-resistant barnyardgrass in rice. Abstract 211. in Proceedings of the Southern Weed Science Society, Orlando, FL, Volume 62.Google Scholar
Norsworthy, J. K., Smith, K. L., Scott, R. C., and Gbur, E. E. 2007. Consultant perspectives on weed management needs in Arkansas cotton. Weed Technol. 21:825831.CrossRefGoogle Scholar
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. Special Issue. Pp. 3162.Google Scholar
[NRC] National Research Council. 2010. Impact of Genetically-Engineered Crops on Farm Sustainability in the United States. Washington, DC The National Academies Press.Google Scholar
Osunsami, S. 2009. Killer Pigweeds Threaten Crops in the South. Accessed: October 1, 2012.Google Scholar
Prince, J. M., Shaw, D. R., Givens, W. A., Newman, M. E., Owen, M.D.K., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2012a. Benchmark Study: III. Survey on changing herbicide use patterns in glyphosate-resistant cropping systems. Weed Technol. 26:536542.Google Scholar
Prince, J. M., Shaw, D. R., Givens, W. A., Owen, M.D.K., Weller, S. C., Young, B. G., Wilson, R. G., and Jordan, D. L. 2012b. Benchmark study, I: introduction, weed population, and management trends from the benchmark survey 2010. Weed Technol. 26:525530.CrossRefGoogle Scholar
Prostko, E. 2010. Consider Metribuzin in Soybeans. Assessed: October 16, 2012.Google Scholar
Reddy, K. N. and Norsworthy, J. K. 2010. Glyphosate-resistant crop production systems: impact on weed species shifts. Pages 165184 in Nandula, V. K., ed. Glyphosate Resistance in Crops and Weeds: History, Development, and Management. Singapore J. Wiley.Google Scholar
Riar, D. S., Norsworthy, J. K., Bond, J. A., Bararpour, M. T., Wilson, M. J., and Scott, R. C. 2012. Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. Intl. J. Agron. DOI:.Google Scholar
Riar, D. S., Norsworthy, J. K., and Griffith, G. M. 2011a. Herbicide programs for enhanced glyphosate-resistant and glufosinate-resistant cotton (Gossypium hirsutum). Weed Technol. 25:526534.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Johnson, D. B., Scott, R. C., and Bagavathiannan, M. 2011b. Glyphosate resistance in a johnsongrass (Sorghum halepense) biotype from Arkansas. Weed Sci. 59:299304.CrossRefGoogle Scholar
Riar, D. S., Norsworthy, J. K., Srivastava, V., Nandula, V., Bond, J. A., and Scott, R. C. 2013. Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J. Agri. Food Chem. 61:278289.CrossRefGoogle Scholar
Ross, J., Eubank, T., Norsworthy, J. K., and Scott, R. C. 2011. 2011 Soybean Variety Screening for Metribuzin Sensitivity. University of Arkansas Division of Agriculture, Cooperative Extension Service. Accessed: October 2, 2012.Google Scholar
Scott, R. C., Boyd, J. W., Selden, G., Norsworthy, J. K., and Burgos, N. 2013. Recommended Chemicals for Weed and Brush Control. Little Rock, AR The University of Arkansas Division of Agriculture Cooperative Extension Service, Miscellaneous Publication 44. Pp 36.Google Scholar
Shaner, D. L. 2000. The impact of glyphosate-resistant crops on the use of other herbicides and resistance management. Pest Manag Sci. 56:320326.3.0.CO;2-B>CrossRefGoogle Scholar
Sosnoskie, L. M. and Culpepper, S. 2012. 2012: Changes in cotton weed management practices in Georgia following the development of glyphosate-resistant Palmer amaranth. Proc. 2012 Beltwide Cotton Conference. Web page: Accessed: October 2, 2012.Google Scholar
Steckel, L. E. 2011. Glyphosate-resistant weeds: lessons learned in Tennessee. In: Proceedings of the 2011 Crop Pest Management Shortcourse & Minnesota Crop Production Retailers Trade Show. Accessed October 2, 2012.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.Google Scholar
Tharp, B. E. and Kells, J. J. 2002. Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technol. 16:274281.CrossRefGoogle Scholar
Thompson, C. and Peterson, D. 2012. A Palmer amaranth population resistant to HPPD herbicides. Abstract 68-1 in: Visions for a Sustainable Plant: Proceedings of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America International Annual Meetings, October 21–24, 2012, Cincinnati, OH. Madison, WI ASA, CSSA, and SSSA.Google Scholar
[USDA-NASS] United States Department of Agriculture, National Agricultural Statistics Service. 2012. Acreage: Accessed: October 2, 2012.Google Scholar
[USDA-NRCS] United States Department of Agriculture, National Resource Conservation Service. 2000. Residue Management in No-Till. Washington, DC Natural Resource Conservation Service Tennessee Jobsheet 329A.Google Scholar
Vencill, W. K., Nichols, R. L., Webster, T. M., Soteres, J. K., Mallory-Smith, C., Burgos, N. R., Johnson, W. G., and McClelland, M. R. 2012. Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci. 2012 Special Issue. Pp. 230.Google Scholar
Webster, T. M. and MacDonald, G. E. 2001. A survey of weeds in various crops in Georgia. Weed Technol. 15:771790.Google Scholar
Webster, T. M. and Sosnoskie, L. M. 2010. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton. Weed Sci. 58:7379.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Assessment of Weed Management Practices and Problem Weeds in the Midsouth United States—Soybean: A Consultant's Perspective
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Assessment of Weed Management Practices and Problem Weeds in the Midsouth United States—Soybean: A Consultant's Perspective
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Assessment of Weed Management Practices and Problem Weeds in the Midsouth United States—Soybean: A Consultant's Perspective
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *