Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T21:36:44.388Z Has data issue: false hasContentIssue false

Temperature Thresholds for Bud Sprouting in Perennial Weeds and Seed Germination in Cotton

Published online by Cambridge University Press:  12 June 2017

Jodie S. Holt
Affiliation:
Dep. Botany and Plant Sci., Univ. California, Riverside, CA 92521
Deborah R. Orcutt
Affiliation:
Dep. Botany and Plant Sci., Univ. California, Riverside, CA 92521

Abstract

Experiments were conducted to establish low temperature thresholds for initiation of bud sprouting in dormant vegetative propagules of johnsongrass, purple nutsedge, and yellow nutsedge, and seed germination in cotton. Weed propagule sprouting and cotton seed germination responses to temperature were determined in a series of experiments conducted on a temperature gradient bar. Four calculated indices were used to quantify germination: mean percent germination per day, reciprocal median response time, and two versions of germination rate index. Data were analyzed as a series of regressions of germination indices against temperature. Maximum and minimum temperatures for germination were derived directly from the regressions and compared among species. Yellow nutsedge had the lowest temperature threshold (6 C), while the other species had low temperature thresholds of 11 to 12 C. Upper temperature thresholds were similar among species and ranged from 42 to 44 C. The lower low temperature threshold of yellow nutsedge sprouting compared to those for cotton, johnsongrass, and purple nutsedge suggests that early establishment by yellow nutsedge is an important factor in competitiveness in mixtures of these species. The results presented here suggest that application of principles derived from studies in seed biology might advance our understanding and ability to manage perennial weeds.

Type
Weed Biology and Ecology
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aleixo, M. de F. D. and Valio, I.F.M. 1976. Effect of light, temperature and endogenous growth regulators on the growth of buds of Cyperus rotundus L. tubers. Z. Pflanzenphysiol. Bd. 80: 336347.CrossRefGoogle Scholar
2. Allen, J. C. 1976. A modified sine wave method for calculating degree days. Environ. Entomol. 5: 388396.CrossRefGoogle Scholar
3. Alm, D. M., Stoller, E. W., and Wax, L. M. 1993. An index model for predicting seed germination and emergence rates. Weed Technol. 7: 560569.Google Scholar
4. Arnold, C. Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Amer. Soc. Hort. Sci. 74: 430445.Google Scholar
5. Benech Arnold, R. L., Ghersa, C. M., Sanchez, R. A., and Insausti, P. 1990. A mathematical model to predict Sorghum halepense(L.) Pers. seedling emergence in relation to soil temperature. Weed Res. 30: 9199.Google Scholar
6. Bewick, T. A., Binning, L. K., and Yandell, B. 1988. A degree day model for predicting the emergence of swamp dodder in cranberry. J. Am. Soc. Hort. Sci. 113: 839841.Google Scholar
7. Bridges, D. C. (ed.). 1992. Crop Losses Due to Weeds in the United States. Weed Science Society of America, Champaign, IL. Pages 75147.Google Scholar
8. Bridges, D. C., Wu, H.-I., Sharpe, P.J.H., and Chandler, J. M. 1989. Modeling distributions of crop and weed seed germination time. Weed Sci. 37: 724729.CrossRefGoogle Scholar
9. Chu, C., Ludford, P. M., Ozbun, J. L., and Sweet, R. D. 1978. Effects of temperature and competition on the establishment and growth of redroot pigweed and common lambsquarters. Crop Sci. 18: 308310.CrossRefGoogle Scholar
10. Cousens, R., Brain, P., O'Donovan, J. T., and O'Sullivan, P. A. 1987. The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Sci. 35: 720725.Google Scholar
11. Forcella, F. 1993. Seedling emergence model for velvetleaf. Agron. J. 85: 929933.Google Scholar
12. Forcella, F. 1992. Prediction of weed seedling densities from buried seed reserves. Weed Res. 32: 2938.Google Scholar
13. Ghersa, C. M. and Holt, J. S. 1995. Using phenology prediction in weed management. Weed Res. 35: 461470.CrossRefGoogle Scholar
14. Ghersa, C. M., Satorre, E. H., and Van Esso, M. L. 1985. Seasonal patterns of johnsongrass seed production in different agricultural systems. Israel J. Bot. 34: 2430.Google Scholar
15. Ghersa, C. M., Satorre, E. H., Van Esso, M. L., Pataro, A., and Elizagaray, R. 1990. The use of thermal calendar models to improve the efficiency of herbicide applications in Sorghum halepense(L.) Pers. Weed Res. 30: 153160.Google Scholar
16. Gutierrez, A. P., Falcon, L. A., Loew, W., Liepzig, P. A., and Van Den Bosch, R. 1975. An analysis of cotton production in California: A model for Acala cotton and the effects of defoliators on its yields. Environ. Entomol. 4: 125136.Google Scholar
17. Harvey, S. J. and Forcella, F. 1993. Vernal seedling emergence model for common lambsquarters (Chenopodium album). Weed Sci. 41: 309316.CrossRefGoogle Scholar
18. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Univ. Press of Hawaii, Honolulu. Pages 824, 54–61, 125–133.Google Scholar
19. Holt, J. S. 1994. Genetic variation in life history traits in yellow nutsedge (Cyperus esculentus) from California. Weed Sci. 42: 378384.Google Scholar
20. Holt, J. S. 1987. Factors affecting germination in greenhouse-produced seeds of Oxalis corniculata, a perennial weed. Amer. J. Bot. 74: 429436.Google Scholar
21. Holt, J. S. and Orcutt, D. R. 1991. Functional relationships of growth and competitiveness in perennial weeds and cotton (Gossypium hirsutum). Weed Sci. 39: 575584.CrossRefGoogle Scholar
22. Horak, M. J. and Holt, J. S. 1986. Isozyme variability and breeding systems in populations of yellow nutsedge (Cyperus esculentus). Weed Sci. 34: 538543.Google Scholar
23. Horak, M. J., Holt, J. S., and Ellstrand, N. C. 1987. Genetic variation in yellow nutsedge (Cyperus esculentus). Weed Sci. 35: 506512.CrossRefGoogle Scholar
24. Horowitz, M. 1972. Early development of johnsongrass. Weed Sci. 20: 271273.Google Scholar
25. Horowitz, M. 1972. Growth, tuber formation and spread of Cyperus rotundus L. from single tubers. Weed Res. 12: 348363.Google Scholar
26. Hsu, F. H., Nelson, C. J., and Chow, W. S. 1984. A mathematical model to utilize the logistic function in germination and seedling growth. J. Exper. Bot. 35: 16291640.Google Scholar
27. Hull, R. J. 1970. Germination control of johnsongrass rhizome buds. Weed Sci. 18: 118121.CrossRefGoogle Scholar
28. Keeley, P. E. and Thullen, R. J. 1989. Growth and interaction of johnsongrass (Sorghum halepense) with cotton (Gossypium hirsutum). Weed Sci. 37: 339344.CrossRefGoogle Scholar
29. Kigel, J. and Koller, D. 1985. Asexual reproduction of weeds. Pages 65100 in Duke, S. O., ed. Weed Physiology. Vol. I. Reproduction and Ecophysiology. CRC Press, Inc., Boca Raton, FL.Google Scholar
30. Lawlor, D. J., Kanemasu, E. T., Albrecht, W. C. III, and Johnson, D. E. 1990. Seed production environment influence on the base temperature for growth of sorghum genotypes. Agron. J. 82: 643647.CrossRefGoogle Scholar
31. McWhorter, C. G. 1972. Factors affecting johnsongrass rhizome production and germination. Weed Sci. 20: 4145.Google Scholar
32. Nussbaum, E. S., Wiese, A. F., Crutchfield, D. E., Chenault, E. W., and Lavake, D. 1985. The effects of temperature and rainfall on emergence and growth of eight weeds. Weed Sci. 33: 165170.CrossRefGoogle Scholar
33. Orwick, P. L., Schreiber, M. M., and Holt, D. A. 1978. Simulation of foxtail (Setaria viridis var. robusta-alba) and (Setaria viridis var. robusta-pur-purea) growth: the development of SETSIM. Weed Sci. 26: 691699.Google Scholar
34. Patterson, D. T. 1982. Shading responses of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Sci. 30: 2530.Google Scholar
35. Radosevich, S. R. and Holt, J. S. 1984. Weed Ecology: Implications for Vegetation Management. John Wiley and Sons, New York. Pages 4753.Google Scholar
36. SAS Institute, Inc. 1988. SAS/STAT® Users Guide. Release 6.03 Edition. SAS Institute, Inc. Cary, North Carolina. 1028 pp.Google Scholar
37. Satorre, E. H., Ghersa, C. M., and Pataro, A. M. 1985. Prediction of Sorghum halepense(L.) Pers. rhizome sprout emergence in relation to air temperature. Weed Res. 25: 103109.Google Scholar
38. Scopel, A. L., Ballare, C. L., and Ghersa, C. M. 1988. Role of seed reproduction in the population ecology of Sorghum halepense in maize crops. J. Appl. Ecol. 25: 951962.CrossRefGoogle Scholar
39. Scott, S. J., Jones, R. A., and Williams, W. A. 1984. Review of data analysis methods for seed germination. Crop Sci. 24: 11921199.CrossRefGoogle Scholar
40. Snedecor, G. W. and Cochran, W. G. 1967. Statistical Methods. 6th Edition. Iowa State Univ. Press, Ames. Pages 159160.Google Scholar
41. Steel, R.G.D. and Torrie, J. H. 1980. Principles and Procedures of Statistics. A Biometrical Approach. 2nd Edition. McGraw-Hill, Inc. New York, NY. Pages 187188, 236, 401–415.Google Scholar
42. Stoller, E. W. and Wax, L. M. 1973. Yellow nutsedge shoot emergence and tuber longevity. Weed Sci. 21: 7681.CrossRefGoogle Scholar
43. Taylorson, R. B. 1967. Seasonal variation in sprouting and available carbohydrate in yellow nutsedge tubers. Weeds 15: 2224.Google Scholar
44. Thompson, P. A. 1974. Characterisation of the germination responses to temperature of vegetable seeds. I. Tomatoes. Sci. Hortic. 2: 3554.Google Scholar
45. Thullen, R. J. and Keeley, P. E. 1975. Yellow nutsedge sprouting and resprouting potential. Weed Sci. 23: 333337.CrossRefGoogle Scholar
46. Tumbleson, M. E. and Kommedahl, T. 1962. Factors affecting dormancy in tubers of Cyperus esculentus . Bot. Gaz. 123: 186190.Google Scholar
47. Weaver, S. E., Tan, C. S., and Brain, P. 1988. Effect of temperature and soil moisture on time of emergence of tomatoes and four weed species. Can. J. Plant Sci. 68: 877886.Google Scholar
48. Wiese, A. M. and Binning, L. K. 1987. Calculating the threshold temperature of development for weeds. Weed Sci. 35: 177179.CrossRefGoogle Scholar
49. Wilen, C. A., Holt, J. S., and McCloskey, W. B. Predicting yellow nutsedge (Cyperus esculentus) emergence using degree-day models. Weed Sci. (In press).Google Scholar