Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-16T09:18:06.608Z Has data issue: false hasContentIssue false

Phloem Mobility of Xenobiotics. VII. The Design of Phloem Systemic Pesticides

Published online by Cambridge University Press:  12 June 2017

Daniel A. Kleier
Affiliation:
E. I. DuPont de Nemours and Company, DuPont Agricultural Products, Stine-Haskell Research Center, P.O. Box 30, Newark, DE 19714, USA
Francis C. Hsu
Affiliation:
E. I. DuPont de Nemours and Company, DuPont Agricultural Products, Stine-Haskell Research Center, P.O. Box 30, Newark, DE 19714, USA

Abstract

We have developed a mathematical model for the plant vascular system that enables the prediction of a compound's phloem systemicity as a function of its partition coefficients and acid dissociation constants. The mathematical model can account for the sensitivity of systemicity to plant parameters such as plant size and pH of the phloem sap. This paper reviews this model and demonstrates how it accounts for the phloem systemic properties of most herbicides as well as that of many endogenous substances such as plant hormones. The model also can be used to design phloem systemic pesticides as illustrated for a pronematicide that successfully controls nematodes when applied foliarly to transgenic tobacco plants capable of regenerating the parent nematicide in a root specific fashion.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Addicott, F. T. 1983. Abscisic Acid. Praeger Publishers, New York, NY.Google Scholar
2. Bromilow, R. H., Rigitano, R. L. O., Briggs, G. G., and Chamberlain, K. 1987. Phloem translocation of non-ionized chemicals in Ricinus communis . Pestic. Sci. 19: 8599.Google Scholar
3. Bromilow, R. H., Chamberlain, K., Tench, A. J., and Williams, R. H. 1993. Phloem translocation of strong acids-glyphosate, substituted phosphonic and sulfonic acids-in ricinus communis 1. Pestic. Sci. 37: 3947.CrossRefGoogle Scholar
4. Brzobohaty, B., Moor, I., Kristoffersen, P., Bako, L., Campos, N., Schell, J., and Palme, K. 1993. Release of active cytokinin by a ~-glucosidase localized to the maize root meristem. Science 262: 10511054.Google Scholar
5. Cantor, C. R. and Schimmel, P. R. 1980. Biophysical chemistry. Part I. Page 49. W. H. Freeman: San Francisco, CA.Google Scholar
6. Chamberlain, K., Butcher, D. N., and White, J. C. 1986. Relationships between chemical structure and phloem mobility in Ricinus communis var. Gibsonii with reference to a series of o-(1-naphthoxy)alkanoic acids. Pestic. Sci. 17: 4852.CrossRefGoogle Scholar
7. Cohen, J. D. and Bandurski, R. S. 1982. Chemistry and physiology of bound auxins. Annu. Rev. Plant Physiol. 33: 403430.CrossRefGoogle Scholar
8. Crafts, A. S. and Crisp, C. E. 1971. Phloem Transport in Plants. Chap.7. W. H. Freeman: San Francisco, CA.Google Scholar
9. Crisp, C. E. and Look, M. 1982. Effect of esterification and sidechain alkylation on alteration of translocation characteristics of methamidophos. Xenobiotica 12: 469479.Google Scholar
10. Grayson, B. T., Kleier, D. A. 1990. Phloem Mobility of Xenobiotics. IV. Modeling of pesticide movement in plants. Pestic. Sci. 30: 6779.Google Scholar
11. Grimm, E., Neumann, S., and Jacob, F. 1985. Transport of xenobiotics in higher plants. II. Absorption of defenuron, carboxyphenylmethylurea, and maleic hydrazide by isolated conducting tissue of cyclamen. Biochem. Physiol. Pflanz. 180: 383392.Google Scholar
12. Hirsch, P. 1952. The acid strength of glucuronic acid in comparison with that of oxycelluloses. Rec. Trav. Chem. 71: 9991006.CrossRefGoogle Scholar
13. Hsu, F. C., Kleier, D. A., and Melander, W. H. 1988. Phloem mobility of xenobiotics. II. Bioassay testing of the unified mathematical model. Plant Physiol. 86: 811816.Google Scholar
14. Hsu, F. C. and Kleier, D. A. 1990. Phloem mobility of xenobiotics III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents. Weed Sci. 38: 315323.Google Scholar
15. Hsu, F. C., Sun, K., Kleier, D. A., and Fielding, M. J. 1995. Phloem mobility of xenobiotics. VI. Phloem mobile pronematicide based on oxamyl exhibiting root-specific activation in transgenic tobacco. Pestic. Sci. 44: 919.Google Scholar
16. Jojima, T., Fahmy, M. A. H., and Fukuto, T. R. 1983. Sugar, glyceryl, and (pyridylalkoxy)sulfinyl derivatives of methylcarbamate insecticides. J. Agric. Food Chem. 31: 613620.CrossRefGoogle ScholarPubMed
17. Kleier, D. A. 1988. Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol, 86: 803810.Google Scholar
18. Kleier, D. A. 1994. Phloem mobility of xenobiotics. V. Structural requirements for phloem-systemic pesticides. Pestic. Sci. 42: 111.Google Scholar
19. Lichtner, F. T. 1986. Phloem transport of agricultural chemicals. Pages 601608 in Cronshaw, J., Lucas, W. J. & Giaquinta, R. T., eds. Phloem Transport, Alan R. Liss: New York.Google Scholar
20. Lichtner, F. T. 1984. Phloem transport of xenobiotic compounds. What's New Plant Physiol. 15: 2932.Google Scholar
21. Little, D. L. and Shaner, D. L. 1991. Adsorption and translocation of the imidazolinone herbicides. Pages 5469 in Shaner, D. L. and O'conner, S. L., eds., The Imidazolinone Herbicides. CRC Press: Boca Raton, FL.Google Scholar
22. Metraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber, Science. 250: 10041006.Google Scholar
23. Meyer, B. S. and Anderson, D. B. 1952. Translocation of Solutes. Plant Physiology, Pages 532537, van Nostrand: Princeton, NJ.Google Scholar
24. O'Neill, S. D., Keith, B., and Rappaport, L. 1986. Transport of gibberellin A1 in cowpea membrane vesicles. Plant Physiol. 80: 812817.Google Scholar
25. Price, C. E., Boatman, S. G., and Boddy, B. J. 1975. The uptake and translocation of 1-methylpyridinium chloride and related model compounds in wheat. J. Exp. Bot. 26: 521532.Google Scholar
26. Rigitano, R. L. O., Bromilow, R. H., Briggs, G. G., and Chamberlain, K. 1987. Phloem translocation of weak acids in Ricinus communis . Pestic. Sci. 19: 113133.Google Scholar
27. Sandermann, H. 1992. Plant metabolism of xenobiotics. TIBS 17: 8284.Google Scholar
28. Scherrer, R.A. 1984. The treatment of ionizable compounds in quantitative structure-activity studies with special consideration of ion partitioning. Pages 225246 in Magee, P. S., Kohn, G. K., and Menn, J. J., eds., Pesticide synthesis through rational approaches, ACS Symposium #255, Amer. Chem. Soc.: Washington, D.C. Google Scholar
29. Smith, H. and Grierson, D. 1982. The molecular biology of plant development. Pages 3137. University of California Press: Berkeley and Los Angeles, CA.Google Scholar
30. Tyree, M. T., Peterson, C. A., and Edgington, L. V. 1979. A simple theory regarding ambimobility of xenobiotics with special reference to the nematicide, oxamyl. Plant Physiol, 63: 367–74.Google Scholar
31. Winkler, R. and Sandermann, H. Jr. 1989. Plant metabolism of chlorinated anilines: Isolation and identification of N-glucosyl and N-malonyl conjugates. Pestic. Biochem. Physiol. 33: 239248.Google Scholar
32. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., and Raskin, I. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809818.Google Scholar
33. Yamamoto, Y. T., Taylor, C. G., Acedo, G. N., Cheng, C. L., and Conkling, M. A. 1991. Characterization of cis-acting sequences regulating root-specific expression in tobacco. Plant Cell 3: 371382.Google ScholarPubMed