Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:32:30.653Z Has data issue: false hasContentIssue false

Herbicides as Synergists for Mycoherbicides, and Vice Versa

Published online by Cambridge University Press:  20 January 2017

Jonathan Gressel*
Affiliation:
Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
*
Corresponding author's E-mail: jonathan.gressel@weizmann.ac.il

Abstract

Except for a small number of cases in which biocontrol agents were introduced from the site of origin of a weed (classical biocontrol), there have been few cases where a pathogen was virulent enough to perform cost effectively in the field as a mycoherbicide. Mycoherbicides are typically weed species specific, so compatibility with herbicides used to control other weeds is often studied. There can be a synergy between mycoherbicides and herbicides at the field level due to overlapping weed spectra (such synergies are not discussed in depth herein). Two approaches have been used to ascertain whether there is synergy in controlling the target weed: (1) random screening with herbicides; (2) using herbicides as antimetabolites to inhibit specific pathways, enhancing virulence. Glyphosate is the most common herbicide to synergize mycoherbicides, possibly due to its dual function as an inhibitor of biosynthesis of phenylpropanoid phytoalexins by suppressing enolphosphate-shikimate phosphate synthase, or by suppressing callose production (by inhibiting callose synthase) as well as inhibiting other calcium-dependent pathways due to the calcium-chelating properties of glyphosate.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahn, B., Paulitz, T., Jabaji-Hare, S., and Watson, A. 2005. Enhancment of Colletotrichum coccodes virulence by inhibitors of plant defense-mechanisms. Biocontrol Sci. Tech. 15:299308.Google Scholar
Aist, J. R. and Gold, R. E. 1987. Prevention of fungal ingress: the role of papillae and calcium. Pages 4758. in Nishimura, S. ed. Molecular Determinants in Plant Diseases. Berlin: Springer.Google Scholar
Amsellem, Z., Sharon, A., and Gressel, J. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology. 81:985988.Google Scholar
Anderson, J. A. and Kolmer, J. A. 2005. Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis. 89:11361142.Google Scholar
Bocion, P. 1986. Synergistic herbicidal compositions containing glyphosate. European patent: 234,379.Google Scholar
Boyette, C. D., Hoagland, R. E., and Weaver, M. A. 2008a. Interaction of a bioherbicide and glyphosate for controlling hemp sesbania in glyphosate-resistant soybean. Weed Biol. Manag. 8:1824.Google Scholar
Boyette, C. D., Hoagland, R. E., Weaver, M. A., and Reddy, K. N. 2008b. Redvine (Brunnichia ovata) and trumpetcreeper (Campsis radicans) controlled under field conditions by a synergistic interaction of the bioherbicide, Myrothecium verrucaria, with glyphosate. Weed Biol. Manag. 8:3945.Google Scholar
Boyette, C. D., Reddy, K. N., and Hoagland, R. E. 2006. Glyphosate and bioherbicide interaction for controlling kudzu (Pueraria lobata), redvine (Brunnichia ovata), and trumpetcreeper (Campsis radicans). Biocontrol Sci. Tech. 16:10671077.Google Scholar
Briere, S. C., Watson, A. K., and Hallett, S. G. 2000. Oxalic acid production and mycelial biomass yield of Sclerotinia minor for the formulation enhancement of a granular turf bioherbicide. Biocontrol Sci. Tech. 10:281289.Google Scholar
Callahan, F. E. and Rowe, D. E. 1991. Use of a host-pathogen interaction system to test whether oxalic-acid is the sole pathogenic determinant in the exudate of Sclerotinia-tripoliorum . Phytopathology. 81:15461550.Google Scholar
Caulder, J. D. and Stowell, L. 1988. Synergistic herbicidal compositions comprising Colletotrichum truncatum . US patent 4,775,405.Google Scholar
Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. Pages 87100. in Duke, S. O., Menn, J. J., and Plimmer, J. R. eds. Pest Control with Enhanced Environmental Safety, Vol. 524. Washington DC: American Chemical Society.Google Scholar
Cohen, B. A., Amsellem, Z., Lev-Yadun, S., and Gressel, J. 2002. Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species. Ann. Bot. 90:567578.Google Scholar
Feng, P. C. C., Clark, C., Andrade, G. C., Balbi, M. C., and Caldwell, P. 2008. The control of Asian rust by glyphosate in glyphosate-resistant soybeans. Pest Manag. Sci. 64:353359.Google Scholar
Gauvrit, C. 2003. Glyphosate response to calcium, ethoxylated amine surfactant, and ammonium sulfate. Weed Tech. 17:799804.Google Scholar
Ghorbani, R., Leifert, C., and Seel, W. 2005. Biological control of weeds with antagonistic plant pathogens. Adv. Agron. 86:191225.Google Scholar
Godoy, G., Steadman, J. R., Dickman, M. B., and Dam, R. 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris . Physiol. Mol. Plant Path. 37:179191.Google Scholar
Graham, G. L., Peng, G., Bailey, K. L., and Holm, F. A. 2006. Interactions of Colletotrichum truncatum with herbicides for control of scentless chamomile (Matricaria perforata). Weed Technol. 20:877884.Google Scholar
Graham, G. L., Peng, G., Bailey, K. L., and Holm, F. A. 2007. Effect of plant stage, Colletotrichum truncatum dose, and use of herbicide on control of Matricaria perforata . Biocontrol. 52:573589.Google Scholar
Grant, N. T., Prusinkiewicz, E., Mortensen, K., and Makowski, R. M. D. 1990. Herbicide interactions with Colletotrichum gloeosporioides f. sp. malvae, a bioherbicide for round-leaved mallow (Malva pusilla) control. Weed Technol. 4:716723.Google Scholar
Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5:4982.Google Scholar
Gressel, J. 1996. $ynergizing herbicides. Pages 12111221. in. Proceedings of the 2nd International Weed Control Congress. Copenhagen: IWSS.Google Scholar
Gressel, J. 2002. Molecular biology in weed biocontrol. Pages 362390. in. Molecular Biology of Weed Control. London: Taylor and Francis.Google Scholar
Gressel, J., Michaeli, D., Kampel, V., Amsellem, Z., and Warshawsky, A. 2002. Ultralow calcium requirements of fungi facilitate use of calcium regulating agents to suppress host calcium-dependent defenses, synergizing infection by a mycoherbicide. J. Agric. Food Chem. 50:63536360.Google Scholar
Gressel, J., Vered, Y., Bar-Lev, S., Milstein, O., and Flowers, H. M. 1983. Partial suppression of cellulase action by artificial lignification of cellulose. Plant Sci. Lett. 32:349353.Google Scholar
Hallett, S. G. 2005. Where are the bioherbicides? Weed Sci. 53:404415.Google Scholar
Kauss, H. 1992. Callose and callose synthase. Pages 18. in Bowles, D. J., Gurr, S., and McPherson, M. eds. Molecular Plant Pathology: Practical Approach to Molecular Plant Pathology. Oxford: Oxford University Press.Google Scholar
Keen, N. T., Holliday, M. J., and Yoshikawa, M. 1982. Effects of glyphosate on glyceollin production and expression of resistance in Phytophthora megasperma f. sp. glycinea in soybeans. Phytopathology. 72:14671469.Google Scholar
Leger, C., Hallett, S. G., and Watson, A. K. 2001. Performance of Colletotrichum dematium for the control of fireweed (Epilobium angustifolium) improved with formulation. Weed Technol. 15:437446.Google Scholar
Levesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Ann. Rev. Phytopathol. 30:579602.Google Scholar
Lundager-Madsen, H. E., Christensen, H. H., and Gottlieb-Petersen, C. G. 1978. Stability constants of copper(II), zinc, manganese(II), calcium, and magnesium complexes of N-(phosphonomethyl)glycine (glyphosate). Acta Chem. Scand. A32:7983.Google Scholar
Mitchell, J. K., Yerkes, C. N., Racine, S. R., and Lewis, E. H. 2008. The interaction of two potential fungal bioherbicides and a sub-lethal rate of glyphosate for the control of shattercane. Biol. Control. 46:391399.Google Scholar
Morin, L., Auld, B. A., and Brown, J. F. 1993. Synergy between Puccinia xanthii and Colletotrichum orbiculare on Xanthium occidentale . Biol. Control. 3:296310.Google Scholar
Motekaitis, R. J. and Martell, A. E. 1985. Metal chelate formation by N-phosphonomethylglycine and related ligands. J. Coord. Chem. 14:139149.Google Scholar
Owen, M. D. K. and Gressel, J. 2001. Non-traditional concepts of $ynergy for evaluating integrated weed management. Pages 376396. in Hall, J. C., Hoagland, R., and Zablotowicz, R. eds. Pesticide Biotransformations in Plants and Microorganisms: Similarities and Divergences. Washington DC: American Chemical Society.Google Scholar
Peng, G. and Byer, K. N. 2005. Interactions of Pyricularia setariae with herbicides for control of green foxtail (Setaria viridis). Weed Technol. 19:589598.Google Scholar
Ray, P., Sushilkumar, , and Pandey, A. K. 2008. Deleterious effect of herbicides on waterhyacinth biocontrol agents Neochetina bruchi and Alternaria alternata . Biocontrol Sci. Technol. 18:523533.Google Scholar
Richer, D. L. 1987. Synergism—a patent view. Pestic. Sci. 19:309315.Google Scholar
Schnick, P. J. and Boland, G. J. 2004. 2,4-D and Phoma herbarum to control dandelion (Taraxacum officinale). Weed Sci. 52:808814.Google Scholar
Schnick, P. J., Stewart-Wade, S. M., and Boland, G. J. 2002. 2,4-D and Sclerotinia minor to control common dandelion. Weed Sci. 50:173178.Google Scholar
Sharon, A., Amsellem, Z., and Gressel, J. 1992a. Glyphosate suppression of an elicited defense response; increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98:654659.Google Scholar
Sharon, A., Ghirlando, R., and Gressel, J. 1992b. Isolation, purification and identification of 2-(p-hydroxyphenoxy)-5,7-dihydroxychromone: a fungal induced phytoalexin from Cassia obtusifolia . Plant Physiol. 98:303308.Google Scholar
Smith, D. A. and Hallett, S. G. 2006. Interactions between chemical herbicides and the candidate bioherbicide Microsphaeropsis amaranthi . Weed Sci. 54:532537.Google Scholar
Stanghellini, M. E., Rasmussen, S. L., and Veandemark, G. J. 1993. Relationship of callose deposition to resistance of lettuce to Plasmopara lactucae-radicis . Phytopathology. 83:14981501.Google Scholar
Steinrücken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enol pyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Comm. 94:12071212.Google Scholar
Weaver, M. A. and Lyn, M. E. 2007. Compatibility of a biological control agent with herbicides for control of invasive plant species. Natural Areas J. 27:264268.Google Scholar
Wyss, G. S. and Muller-Scharer, H. 2001. Effects of selected herbicides on the germination and infection process of Puccinia lagenophora, a biocontrol pathogen of Senecio vulgaris . Biol. Control. 20:160166.Google Scholar
Xuei, X. L., Järlfors, U., and Ku, J. 1988. Ultrastructural changes associated with induced systemic resistance to cucumber disease: Host response and development of Colletotrichum lagenarium in systemically protected leaves. Can. J. Bot. 66:10281038.Google Scholar
Yandoc, C. B., Rosskopf, E. N., Pitelli, R., and Charudattan, R. 2006. Effect of selected pesticides on conidial germination and mycelial growth of Dactylaria higginsii, a potential bioherbicide for purple nutsedge (Cyperus rotundus). Weed Technol. 20:255260.Google Scholar
Zhou, T. and Boland, G. J. 1999. Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum . Can. J. Plant Pathol. 21:9399.Google Scholar